1887

Abstract

In response to various stresses, as well as during the diauxic transition, the Msn2p and Msn4p transcription factors of are activated and induce a large set of genes. This activation is inhibited by the Ras/cAMP/PKA (cAMP-dependent protein kinase) pathway. Here we show by immunoblotting experiments that Msn2p and Msn4p are phosphorylated during growth on glucose, and become hyperphosphorylated at the diauxic transition and upon heat shock. This hyperphosphorylation is correlated with activation of Msn2/4p-dependent transcription. An increased level of cAMP prevents and reverses these hyperphosphorylations, indicating that kinases other than PKA are involved. These results suggest that PKA and stress-activated kinases control Msn2/4p activity by antagonistic phosphorylation. It was also noted that Msn4p is transiently increased at the diauxic transition. Msn2p and Msn4p present different hyperphosphorylation patterns in response to different stresses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2113
2000-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462113a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2113&mimeType=html&fmt=ahah

References

  1. Beck T., Hall M. N. 1999; The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692 [CrossRef]
    [Google Scholar]
  2. Boy-Marcotte E., Ikonomi P., Jacquet M. 1996; SDC25, a dispensable Ras guanine nucleotide exchange factor of Saccharomyces cerevisiae, differs from CDC25 by its regulation. Mol Biol Cell 7:529–539 [CrossRef]
    [Google Scholar]
  3. Boy-Marcotte E., Perrot M., Bussereau F., Boucherie H., Jacquet M. 1998; Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180:1044–1052
    [Google Scholar]
  4. Boy-Marcotte E., Lagniel G., Perrot M., Bussereau F., Boudoscq A., Jacquet M., Labarre J. 1999; The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33:274–283 [CrossRef]
    [Google Scholar]
  5. Carlson M., Botstein D. 1982; Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154 [CrossRef]
    [Google Scholar]
  6. De Risi J. L., Iyer V. R., Brown P. O. 1997; Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686 [CrossRef]
    [Google Scholar]
  7. Estruch F., Carlson M. 1993; Two homologous zinc finger genes identified by multicopy suppression in SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13:3872–3881
    [Google Scholar]
  8. François J. M., Eraso P., Gancedo C. 1987; Changes in the concentration of cAMP, fructose 2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164:369–373 [CrossRef]
    [Google Scholar]
  9. Godon C., Lagniel G., Lee J., Buhler J. M., Kieffer S., Perrot M., Boucherie H., Toledano M. B., Labarre J. 1998; The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489 [CrossRef]
    [Google Scholar]
  10. Görner W., Durchschlag E., Martinez-Pastor M. T., Estruch F., Ammerer G., Hamilton B., Ruis H., Schüller C. 1998; Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597 [CrossRef]
    [Google Scholar]
  11. Gustin M. C., Albertyn J., Alexander M., Davenport K. 1998; MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300
    [Google Scholar]
  12. Harlow E., Lane B. 1988; Purifying antibodies from immunoblots. In Antibodies, a Laboratory Manual p. 498 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Inoue Y., Tsujimoto Y., Kimura A. 1998; Expression of glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J Biol Chem 273:2977–2983 [CrossRef]
    [Google Scholar]
  14. Kamada Y., Jung U. S., Piotrowski J., Levin D. E. 1995; The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9:1559–1571 [CrossRef]
    [Google Scholar]
  15. Komeili A., O’Shea E. K. 1999; Role of phosphorylation sites in regulating activity of transcription factor Pho4. Science 284:977–980 [CrossRef]
    [Google Scholar]
  16. Kyhse-Andersen J. 1984; Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209 [CrossRef]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–682
    [Google Scholar]
  18. Lee J., Godon C., Lagniel G., Spector D., Garin J., Labarre J., Toledano M. 1999; Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274:16040–16046 [CrossRef]
    [Google Scholar]
  19. Mager W. H., De Kruijff A. J. J. 1995; Stress-induced transcriptional activation. Microbiol Rev 59:506–531
    [Google Scholar]
  20. Marchler G., Schüller C., Adam G., Ruis H. 1993; A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003
    [Google Scholar]
  21. Martinez-Pastor M. T., Marchler G., Schüller C., Marchler-Bauer A., Ruis H., Estruch F. 1996; The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:2227–2235
    [Google Scholar]
  22. Moskvina E., Imre E.-M., Ruis H. 1999; Stress factors acting at the level of the plasma membrane induce transcription via the stress response element (STRE) of the yeast Saccharomyces cerevisiae. Mol Microbiol 32:1263–1272 [CrossRef]
    [Google Scholar]
  23. Muslin A. J., Tanner J. W., Allen P. M., Shaw A. S. 1996; Interaction of 14-3-3 with signalling proteins is mediated by the recognition of phosphoserine. Cell 84:899–897 [CrossRef]
    [Google Scholar]
  24. O’Brien R. M., Halmi N., Stromstedt P., Printz R. L., Granner D. K. 1995; Expression cloning of a zinc-finger cyclic AMP-response-element-binding protein. Biochem J 312:17–21
    [Google Scholar]
  25. Rep M., Reiser V., Gartner U., Thevelein J., Hohman S., Ammerer G. 1999; Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and a novel factor Hot1p. Mol Cell Biol 19:5474–5485
    [Google Scholar]
  26. Rose M. D., Winston F., Hieter P. 1990 Methods in Yeast Genetics: a Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Ruis H., Schüller C. 1995; Stress signalling in yeast. Bioessays 17:959–965 [CrossRef]
    [Google Scholar]
  28. Russell M., Bradshaw-Rouse J., Markwardt D., Heidman W. 1993; Changes in gene expression in the Ras/adenylate cyclase system of S. cerevisiae: correlation with cAMP levels and growth arrest. Mol Biol Cell 4:757–765 [CrossRef]
    [Google Scholar]
  29. Schmitt A. P., McEntee K. 1996; Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782 [CrossRef]
    [Google Scholar]
  30. Treger J. M., Schmitt A. P., Simon J. R., McEntee K. 1998; Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J Biol Chem 273:26875–26879 [CrossRef]
    [Google Scholar]
  31. Volland C., Garnier C., Haguenauer-Tsapis R. 1992; In vivo phosphorylation of the yeast uracil permease. J Biol Chem 267:23767–23771
    [Google Scholar]
  32. Wilson R. R., Renault G., Jacquet M., Tatchell K. 1993; The pde2 gene of Saccharomyces cerevisiae is allelic to rca1 and encodes a phosphodiesterase which protects the cell from extracellular cAMP. FEBS Lett 325:191–195 [CrossRef]
    [Google Scholar]
  33. Wilson W. A., Hawley S. A., Hardie D. G. 1996; Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6:1426–1434 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2113
Loading
/content/journal/micro/10.1099/00221287-146-9-2113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error