1887

Abstract

Listeriolysin O (LLO) is a major virulence factor secreted by the pathogenic and acts as pore-forming cytolysin. Based on sequence similarities between LLO and perfringolysin (PFO), the cytolysin from of known crystallographic structure, two truncated LLO proteins were produced: LLO-d123, comprising the first three predicted domains, and LLO-d4, the last C-terminal domain. The two proteins were efficiently secreted into the culture supernatant of and were able to bind to cell membranes. Strikingly, when expressed simultaneously, the two secreted domains LLO-d123 and LLO-d4 reassembled into a haemolytically active form. Two in-frame linker insertions were generated in the hinge region between the d123 and d4 domains. In both cases, the insertion created a major cleavage site for proteolytic degradation and abolished cytolytic activity, which might suggest that the region connecting d123 and d4 participates in the interaction between the two portions of the monomer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-10-2679
2001-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/10/1472679a.html?itemId=/content/journal/micro/10.1099/00221287-147-10-2679&mimeType=html&fmt=ahah

References

  1. Alouf J. E. 2000; Cholesterol-binding cytolytic protein toxins. Int J Med Microbiol 290:351–356 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Autret N., Dubail I., Trieu-Cuot P., Berche P., Charbit A. 2001; Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect Immun 69:2054–2065 [CrossRef]
    [Google Scholar]
  4. Bayley H. 1997; Toxin structure: part of a hole?. Curr Biol 7:R763–R767 [CrossRef]
    [Google Scholar]
  5. Berche P., Gaillard J. L., Sansonetti P. J. 1987; Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T cell-mediated immunity. J Immunol 138:2266–2271
    [Google Scholar]
  6. Betton J. M., Hofnung M. 1994; In vivo assembly of active maltose binding protein from independently exported protein fragments. EMBO J 13:1226–1234
    [Google Scholar]
  7. Bibi E., Kaback H. R. 1990; In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc Natl Acad Sci USA 87:4325–4329 [CrossRef]
    [Google Scholar]
  8. Chakraborty T., Leimeister-Wachter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S. 1992; Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174:568–574
    [Google Scholar]
  9. Charbit A., Andersen C., Wang J., Schiffler B., Michel V., Benz R., Hofnung M. 2000; In vivo and in vitro studies of transmembrane beta-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin. Mol Microbiol 35:777–790 [CrossRef]
    [Google Scholar]
  10. Decatur A. L., Portnoy D. A. 2000; A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992–995 [CrossRef]
    [Google Scholar]
  11. Diep D. B., Lawrence T. S., Ausio J., Howard S. P., Buckley J. T. 1998; Secretion and properties of the large and small lobes of the channel-forming toxin aerolysin. Mol Microbiol 30:341–352 [CrossRef]
    [Google Scholar]
  12. Dramsi S., Biswas I., Maguin E., Braun L., Mastroeni P., Cossart P. 1995; Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigene family. Mol Microbiol 16:251–261 [CrossRef]
    [Google Scholar]
  13. Drevets D. A., Sawyer R. T., Potter T. A., Campbell P. A. 1995; Listeria monocytogenes infects human endothelial cells by two distinct mechanisms. Infect Immun 63:4268–4276
    [Google Scholar]
  14. Dubail I., Berche P.The European Listeria Genome Consortium Charbit A. 2000; Listeriolysin O as a reporter to identify constitutive and in vivo-inducible promoters in the pathogen Listeria monocytogenes . Infect Immun 68:3242–3250 [CrossRef]
    [Google Scholar]
  15. Erdenlig S., Ainsworth A. J., Austin F. W. 1999; Production of monoclonal antibodies to Listeria monocytogenes and their application to determine the virulence of isolates from channel catfish. Appl Environ Microbiol 65:2827–2832
    [Google Scholar]
  16. Gaillard J. L., Berche P., Sansonetti P. 1986; Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes . Infect Immun 52:50–55
    [Google Scholar]
  17. Gaillard J. L., Berche P., Mounier J., Richard S., Sansonetti P. 1987; In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55:2822–2829
    [Google Scholar]
  18. Gaillard J. L., Jaubert F., Berche P. 1996; The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo . J Exp Med 183:359–369 [CrossRef]
    [Google Scholar]
  19. Geoffroy C., Gaillard J. L., Alouf J. E., Berche P. 1989; Production of thiol-dependent haemolysins by Listeria monocytogenes and related species. J Gen Microbiol 135:481–487
    [Google Scholar]
  20. Ghani E., Weis S., Walev I., Kehoe M., Bhakdi S., Palmer M. 1999; Streptolysin O: inhibition of the conformational change during membrane binding of the monomer prevents oligomerization and pore formation. Biochemistry 38:15204–15211 [CrossRef]
    [Google Scholar]
  21. Guex N., Diemand A., Peitsch M. C. 1999; Protein modelling for all. Trends Biochem Sci 24:364–367 [CrossRef]
    [Google Scholar]
  22. Guzman C. A., Rohde M., Chakraborty T., Domann E., Hudel M., Wehland J., Timmis K. N. 1995; Interaction of Listeria monocytogenes with mouse dendritic cells. Infect Immun 63:3665–3673
    [Google Scholar]
  23. Heuck A. P., Hotze E. M., Tweten R. K., Johnson A. E. 2000; Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell 6:1233–1242 [CrossRef]
    [Google Scholar]
  24. Jacobs T., Darji A., Frahm N., Rohde M., Wehland J., Chakraborty T., Weiss S. 1998; Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol Microbiol 28:1081–1089 [CrossRef]
    [Google Scholar]
  25. Jacobs T., Cima-Cabal M. D., Darji A. 7 other authors 1999; The conserved undecapeptide shared by thiol-activated cytolysins is involved in membrane binding. FEBS Lett 459:463–466 [CrossRef]
    [Google Scholar]
  26. Jones S., Preiter K., Portnoy D. A. 1996; Conversion of an extracellular cytolysin into a phagosome-specific lysin which supports the growth of an intracellular pathogen. Mol Microbiol 21:1219–1225 [CrossRef]
    [Google Scholar]
  27. Kathariou S., Metz P., Hof H., Goebel W. 1987; Tn 916 -induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes . J Bacteriol 169:1291–1297
    [Google Scholar]
  28. Kuhn M., Goebel W. 1989; Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun 57:55–61
    [Google Scholar]
  29. Leimeister-Wachter M., Haffner C., Domann E., Goebel W., Chakraborty T. 1990; Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes . Proc Natl Acad Sci USA 87:8336–8340 [CrossRef]
    [Google Scholar]
  30. Lety M. A., Frehel C., Dubail I., Beretti J. L., Kayal S., Berche P., Charbit A. 2001; Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence of Listeria monocytogenes . Mol Microbiol 39:1124–1140 [CrossRef]
    [Google Scholar]
  31. Mackaness G. B. 1962; Cellular resistance to infection. J Exp Med 116:381–406 [CrossRef]
    [Google Scholar]
  32. Mengaud J., Vicente M. F., Chenevert J., Pereira J. M., Geoffroy C., Gicquel-Sanzey B., Baquero F., Perez-Diaz J. C., Cossart P. 1988; Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes . Infect Immun 56:766–772
    [Google Scholar]
  33. Michel E., Reich K. A., Favier R., Berche P., Cossart P. 1990; Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol 4:2167–2178 [CrossRef]
    [Google Scholar]
  34. Nakamura M., Sekino-Suzuki N., Mitsui K. I., Ohno-Iwashita Y. 1998; Contribution of tryptophan residues to the structural changes in perfringolysin O during interaction with liposomal membranes. J Biochem 123:1145–1155 [CrossRef]
    [Google Scholar]
  35. Palmer M., Harris R., Freytag C., Kehoe M., Tranum-Jensen J., Bhakdi S. 1998; Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605 [CrossRef]
    [Google Scholar]
  36. Park S. F., Stewart G. S. 1990; High efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94:129–132 [CrossRef]
    [Google Scholar]
  37. Portnoy D. A., Jacks P. S., Hinrichs D. J. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes . J Exp Med 167:1459–1471 [CrossRef]
    [Google Scholar]
  38. Renzoni A., Cossart P., Dramsi S. 1999; PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol 34:552–561 [CrossRef]
    [Google Scholar]
  39. Rossjohn J., Fell S. C., McKinstry W. J., Tweten R. K., Parker M. W. 1997; Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692 [CrossRef]
    [Google Scholar]
  40. Shatursky O., Heuck A. P., Shepard L. A., Rossjohn J., Parker M. W., Johnson A. E., Tweten R. K. 1999; The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299 [CrossRef]
    [Google Scholar]
  41. Sheehan B., Kocks C., Dramsi S., Gouin E., Klarsfeld A. D., Mengaud J., Cossart P. 1994; Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr Top Microbiol Immunol 192:187–216
    [Google Scholar]
  42. Shepard L. A., Heuck A. P., Hamman B. D., Rossjohn J., Parker M. W., Ryan K. R., Johnson A. E., Tweten R. K. 1998; Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574 [CrossRef]
    [Google Scholar]
  43. Shepard L. A., Shatursky O., Johnson A. E., Tweten R. K. 2000; The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39:10284–10293 [CrossRef]
    [Google Scholar]
  44. Shiba K., Schimmel P. 1992; Functional assembly of a randomly cleaved protein. Proc Natl Acad Sci USA 89:1880–1884 [CrossRef]
    [Google Scholar]
  45. Trieu-Cuot P., Carlier C., Poyart-Salmeron C., Courvalin P. 1990; A pair of mobilizable shuttle vectors conferring resistance to spectinomycin for molecular cloning in Escherichia coli and in Gram-positive bacteria. Nucleic Acids Res 18:4296 [CrossRef]
    [Google Scholar]
  46. Trieu-Cuot P., Carlier C., Poyart-Salmeron C., Courvalin P. 1991; An integrative vector exploiting the transposition properties of Tn 1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. Gene 106:21–27 [CrossRef]
    [Google Scholar]
  47. Tweten R. K., Harris R. W., Sims P. J. 1991; Isolation of a tryptic fragment from Clostridium perfringens theta-toxin that contains sites for membrane binding and self-aggregation. J Biol Chem 266:12449–12454
    [Google Scholar]
  48. Villanueva M. S., Sijts A. J., Pamer E. G. 1995; Listeriolysin is processed efficiently into an MHC class I-associated epitope in Listeria monocytogenes -infected cells. J Immunol 155:5227–5233
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-10-2679
Loading
/content/journal/micro/10.1099/00221287-147-10-2679
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error