1887

Abstract

The glucosyltransferase gene, , is positively regulated by the upstream determinant . In the present study, two ORFs, transcribed on the opposite DNA strand, were identified immediately downstream of . The first, designated , shares a convergent putative transcriptional terminator with , and encodes a predicted 46 kDa transmembrane protein similar to the TrsA involved in polysaccharide biosynthesis. Insertional inactivation of resulted in only ∼∼60% of the parental level of glucosyltransferase activity. The 870 bp gene 5′ to is similar to the regulatory determinant. Designated , this -like determinant downstream of encodes a putative 336 kDa cytoplasmic protein. Despite their sequence similarity, the functions of and appear specific. Strains in which was insertionally inactivated and strains containing plasmid-borne had parental levels of glucosyltransferase activity. Northern blot hybridization analyses showed ∼13 kb -specific and ∼10 kb -specific mRNA transcripts associated with this region; no polycistronic transcript was observed. Although like gene products have been demonstrated to function as positive transcriptional regulators of adjacent genes in several streptococcal species, Northern blot analysis suggested that did not influence the transcription of or the divergent downstream -like determinant under the conditions in the present study. Comparison of this chromosome region to other streptococcal genomes, which do not contain the /-flanked region involved in glucan synthesis, raised intriguing possibilities about the origins of this chromosomal region, and also suggested that might regulate a distally located gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-11-3061
2001-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/11/1473061a.html?itemId=/content/journal/micro/10.1099/00221287-147-11-3061&mimeType=html&fmt=ahah

References

  1. Altschul, S. G., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef] [Google Scholar]
  2. Ausubel, F. M., Brent, B., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1987).Current Protocols in Molecular Biology. New York: Wiley.
  3. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L. & Sonnhammer, E. L. (2000). The pfam protein families database. Nucleic Acids Res 28, 263-266.[CrossRef] [Google Scholar]
  4. Chaussee, M. S., Ajdic, D. & Ferretti, J. J. (1999). The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect Immun 67, 1715-1722. [Google Scholar]
  5. Chaussee, M. S., Watson, R. O., Smoot, J. C. & Musser, J. M. (2001). Identification of Rgg-regulated exoproteins of Streptococcus pyogenes. Infect Immun 69, 822-831.[CrossRef] [Google Scholar]
  6. Ferretti, J. J., McShan, W. M., Ajdic, D. & 20 other authors (2001). Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci USA 98, 4658–4663.[CrossRef] [Google Scholar]
  7. Frandsen, E. V. G., Pedrazzoli, V. & Kilian, M. (1991). Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 6, 129-133.[CrossRef] [Google Scholar]
  8. Fujiwara, T., Hoshino, T., Ooshima, T., Sobue, S. & Hamada, S. (2000). Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect Immun 68, 2475-2483.[CrossRef] [Google Scholar]
  9. Grahame, D. A. & Mayer, R. M. (1984). The origin and composition of multiple forms of dextransucrase from Streptococcus sanguis. Biochim Biophys Acta 786, 42-48.[CrossRef] [Google Scholar]
  10. Haisman, R. J. & Jenkinson, H. F. (1991). Mutants of Streptococcus gordonii Challis overproducing glucosyltransferase. J Gen Microbiol 137, 483-489.[CrossRef] [Google Scholar]
  11. Hofmann, K. & Stoffel, W. (1993). TMbase – a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374, 166. [Google Scholar]
  12. Kilic, A. O., Herzberg, M. C., Meyer, M. W., Zhao, X. & Tao, L. (1999). Streptococcal reporter gene-fusion vector for identification of in vivo expressed genes. Plasmid 42, 67-72.[CrossRef] [Google Scholar]
  13. Kopec, L. K., Vacca-Smith, A. M. & Bowen, W. H. (1997). Structural aspects of glucans formed in solution and on the surface of hydroxyapatite. Glycobiology 7, 929-934.[CrossRef] [Google Scholar]
  14. Lawson, J. & Gooder, H. (1970). Growth and development of competence in the group H streptococci. J Bacteriol 102, 820-825. [Google Scholar]
  15. Lyon, W. R., Gibson, C. M. & Caparon, M. G. (1998). A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes.EMBO 17, 6263-6275.[CrossRef] [Google Scholar]
  16. Macrina, F. L., Tobian, J. A., Jones, K. R. & Evans, R. P. (1981). Molecular cloning in the streptococci In Genetic Engineering of Microorganisms for Chemicals , pp. 195-210. Edited by A. Hollaender, R. DeMoss, S. Kaplan, J. Konisky, D. Savage & R. Wolfe. New York:Plenum.
  17. Macrina, F. L., Evans, R. P., Tobian, J. A., Hartley, D. L., Clewell, D. B. & Jones, K. R. (1983). Novel shuttle plasmid vehicles for Escherichia–Streptococcus transgeneric cloning. Gene 25, 145-150.[CrossRef] [Google Scholar]
  18. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1-6.[CrossRef] [Google Scholar]
  19. Qi, G., Chen, P. & Caufield, P. W. (1999). Functional analysis of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl Environ Microbiol 65, 652-658. [Google Scholar]
  20. Reeves, P. R., Hobbs, M., Valvano, M. A. and 8 other authors (1996). Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4, 495–503.[CrossRef] [Google Scholar]
  21. Sanders, J. W., Leenhouts, K., Burghoorn, J., Brands, J. R., Venema, G. & Kok, J. (1998). A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27, 299-310.[CrossRef] [Google Scholar]
  22. Schnaitman, C. A. & Klena, J. D. (1993). Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57, 655-682. [Google Scholar]
  23. Skurnik, M., Venho, R., Toivanen, P. & Al-Hendy, A. (1995). A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis. Mol Microbiol 17, 575-594.[CrossRef] [Google Scholar]
  24. Sulavik, M. C. & Clewell, D. B. (1996). Rgg is a positive transcriptional regulator of the Streptococcus gordonii gtfG gene. J Bacteriol 178, 5826-5830. [Google Scholar]
  25. Sulavik, M. C., Tardif, G. & Clewell, D. B. (1992). Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J Bacteriol 174, 3577-3586. [Google Scholar]
  26. Tardif, G., Sulavik, M., Jones, G. W. & Clewell, D. B. (1989). Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect Immun 57, 3945-3948. [Google Scholar]
  27. Terleckyj, B., Willett, N. P. & Shockman, G. D. (1975). Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun 11, 649-655. [Google Scholar]
  28. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994).clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.[CrossRef] [Google Scholar]
  29. Vickerman, M. M. & Clewell, D. B. (1997). Deletions in the carboxyl terminal region of Streptococcus gordonii glucosyltransferase affect cell-associated enzyme activity and sucrose-associated accumulation of growing cells. Appl Environ Microbiol 63, 1667-1673. [Google Scholar]
  30. Vickerman, M. M., Clewell, D. B. & Jones, G. W. (1991). Ecological implications of glucosyltransferase phase variation in Streptococcus gordonii. Appl Environ Microbiol 57, 3648-3651. [Google Scholar]
  31. Vickerman, M. M., Sulavik, M. C. & Clewell, D. B. (1995). Oral streptococci with genetic determinants similar to the glucosyltransferase regulatory gene, rgg. Infect Immun 63, 4524-4527. [Google Scholar]
  32. Vickerman, M. M., Sulavik, M. C., Minick, P. E. & Clewell, D. B. (1996). Changes in the carboxyl terminal repeat region affect extracellular activity and glucan products of Streptococcus gordonii glucosyltransferase. Infect Immun 64, 5117-5128. [Google Scholar]
  33. Vickerman, M. M., Jones, G. W. & Clewell, D. B. (1997a). Molecular analysis of representative Streptococcus gordonii Spp phase variants reveals no differences in the glucosyltransferase structural gene, gtfG. Oral Microbiol Immunol 12, 82-90.[CrossRef] [Google Scholar]
  34. Vickerman, M. M., Sulavik, M. C., Nowak, J. D., Gardner, N. M., Jones, G. W. & Clewell, D. B. (1997b). Nucleotide sequence analysis of the Streptococcus gordonii glucosyltransferase gene, gtfG.DNA Seq 7, 83-95. [Google Scholar]
  35. Vickerman, M. M., Mather, N. M., Minick, P. E. & Edwards, C. A. (2002). Initial characterization of the Streptococcus gordonii htpX gene. Oral Microbiol Immun (in press).
  36. Wintjens, R. & Rooman, M. (1996). Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262, 294-313.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-11-3061
Loading
/content/journal/micro/10.1099/00221287-147-11-3061
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error