1887

Abstract

Sensitivity of to the bacteriocin mesentericin Y105 was previously shown to be dependent on the σ subunit of the RNA polymerase. This points towards expression of particular σ-dependent genes. The present study describes first, ManR, a new σ-associated activator, and second, \(EII_{t}^{Man}\) , a new σ-dependent PTS permease of the mannose family, both involved in sensitivity to mesentericin Y105, since interruption of their corresponding genes led to resistance of EGDe. \(EII_{t}^{Man}\) is likely composed of three subunits encoded by the operon (, and genes). Interruption of either the proximal () or distal () gene led to resistance, supporting results obtained in . Accordingly, such PTS permeases of the mannose family should be involved in sensitivity of different target strains to mesentericin Y105. In , expression of the operon is shown to be controlled by σ and ManR and to be induced by both glucose and mannose. The latter result indicates that these sugars are transported by the \(EII_{t}^{Man}\) permease. Moreover, these sugars correlatively induce sensitivity of to mesentericin Y105, strongly favouring the primary role of \(EII_{t}^{Man}\) . MptD, a membrane subunit of \(EII_{t}^{Man}\) , presents an additional domain compared to most IID subunits described in data banks. An in-frame deletion of this domain in led to resistance of , showing its connection with sensitivity and suggesting that it could be directly involved in the recognition of the target cell by mesentericin Y105. Taken together, the results of this work demonstrate that \(EII_{t}^{Man}\) is prominent in sensitivity to mesentericin Y105 and could be a receptor for subclass IIa bacteriocins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-12-3263
2001-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/12/1473263a.html?itemId=/content/journal/micro/10.1099/00221287-147-12-3263&mimeType=html&fmt=ahah

References

  1. Abee, T. (1995). Pore-forming bacteriocins of gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett 129, 1-10.[CrossRef] [Google Scholar]
  2. Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O. P., Sahl, H. & de Kruijff, B. (1999). Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286, 2361-2364.[CrossRef] [Google Scholar]
  3. Buck, M., Gallegos, M. T., Studholme, D. J., Guo, Y. & Gralla, J. D. (2000). The bacterial enhancer-dependent sigma54 (sigmaN) transcription factor. J Bacteriol 182, 4129-4136.[CrossRef] [Google Scholar]
  4. Dalet, K., Briand, C., Cenatiempo, C. & Héchard, Y. (2000). The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41, 441-443.[CrossRef] [Google Scholar]
  5. Débarbouillé, M., Martin-Verstraete, I., Klier, A. & Rapoport, G. (1991). The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci USA 88, 2212-2216.[CrossRef] [Google Scholar]
  6. Ennahar, S., Sashihara, T., Sonomoto, K. & Ishizaki, A. (2000). Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24, 85-106.[CrossRef] [Google Scholar]
  7. Esquinas-Rychen, M. & Erni, B. (2001). Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate:carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3, 361-370. [Google Scholar]
  8. Gauthier, L., Bourassa, S., Brochu, D. & Vadeboncoeur, C. (1990). Control of sugar utilization in oral streptococci. Properties of phenotypically distinct 2-deoxyglucose-resistant mutants of Streptococcus salivarius. Oral Microbiol Immunol 5, 352-359.[CrossRef] [Google Scholar]
  9. Gravesen, A., Warthoe, P., Knochel, S. & Thirstrup, K. (2000). Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative β-glucoside-specific PTS system. Microbiology 146, 1381-1389. [Google Scholar]
  10. Guyonnet, D., Fremaux, C., Cenatiempo, Y. & Berjeaud, J.-M. (2000). Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl Environ Microbiol 66, 1744-1748.[CrossRef] [Google Scholar]
  11. Héchard, Y., Dérijard, B., Letellier, F. & Cenatiempo, Y. (1992). Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J Gen Microbiol 138, 2725-2731.[CrossRef] [Google Scholar]
  12. Héchard, Y., Pelletier, C., Cenatiempo, C. & Frère, J. (2001). Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147, 1575-1580. [Google Scholar]
  13. Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12, 39-85.[CrossRef] [Google Scholar]
  14. Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H. & Cossart, P. (1992).L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521-531.[CrossRef] [Google Scholar]
  15. Lortie, L. A., Pelletier, M., Vadeboncoeur, C. & Frenette, M. (2000). The gene encoding in Streptococcus salivarius is part of a tetracistronic operon encoding a phosphoenolpyruvate:mannose/glucose phosphotransferase system. Microbiology 146, 677-685. [Google Scholar]
  16. Luking, A., Stahl, U. & Schmidt, U. (1998). The protein family of RNA helicases. Crit Rev Biochem Mol Biol 33, 259-296.[CrossRef] [Google Scholar]
  17. Maftah, A., Renault, D., Vignoles, C., Héchard, Y., Bressollier, P., Ratinaud, M. H., Cenatiempo, Y. & Julien, R. (1993). Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105. J Bacteriol 175, 3232-3235. [Google Scholar]
  18. Morett, E. & Segovia, L. (1993). The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175, 6067-6074. [Google Scholar]
  19. Petit, M. A., Bruand, C., Jannière, L. & Ehrlich, S. D. (1990). Tn10-derived transposons active in Bacillus subtilis. J Bacteriol 172, 6736-6740. [Google Scholar]
  20. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. (1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594. [Google Scholar]
  21. Ramnath, M., Beukes, M., Tamura, K. & Hastings, J. W. (2000). Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66, 3098-3101.[CrossRef] [Google Scholar]
  22. Robichon, D., Gouin, E., Débarbouillé, M., Cossart, P., Cenatiempo, Y. & Héchard, Y. (1997). The rpoN (sigma54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J Bacteriol 179, 7591-7594. [Google Scholar]
  23. Saier, M. H.Jr & Reizer, J. (1994). The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol 13, 755-764.[CrossRef] [Google Scholar]
  24. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Shingler, V. (1996). Signal sensing by sigma 54-dependent regulators: derepression as a control mechanism. Mol Microbiol 19, 409-416.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-12-3263
Loading
/content/journal/micro/10.1099/00221287-147-12-3263
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error