1887

Abstract

resides within the macrophages of the host, but the molecular and cellular mechanisms of survival are poorly understood. Recent evidence suggests that the attenuated vaccine strain BCG is both a deletion and regulatory mutant, yet retains both its immunoprotective and intra-macrophage survival potential. In an attempt to define BCG genes expressed during interaction with macrophages, the patterns of protein synthesis were examined by both one- and two-dimensional gel electrophoresis of BCG while inside the human leukaemic macrophage cell line THP-1. This study demonstrated that BCG expresses proteins while resident inside macrophages that are not expressed during growth in culture media or under conditions of heat shock. Western blotting analysis revealed that some of the differentially expressed proteins are specifically recognized by human -infected sera. Proteome analysis by two-dimensional electrophoresis and MS identified six abundant proteins that showed increased expression inside macrophages: 16 kDa α-crystallin (HspX), GroEL-1 and GroEL-2, a 317 kDa hypothetical protein (Rv2623), InhA and elongation factor Tu (Tuf). Identification of proteins by such a strategy will help elucidate the molecular basis of the attenuation and the vaccine potential of BCG, and may provide antigens that distinguish infection with from vaccination with BCG.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-459
2001-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470459a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-459&mimeType=html&fmt=ahah

References

  1. Abshire K. Z., Neidhardt F. C. 1993; Analysis of proteins synthesised by Salmonella typhimurium during growth within a host macrophage. J Bacteriol 175:3734–3743
    [Google Scholar]
  2. Alavi M. R., Affronti L. F. 1994; Induction of mycobacterial proteins during phagocytosis and heat shock: a time interval analysis. J Leukoc Biol 55:633–641
    [Google Scholar]
  3. Arruda S., Bomfim G., Knights R., Huima-Byron T., Riley L. W. 1993; Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457 [CrossRef]
    [Google Scholar]
  4. Banerjee D. K., Patel B. K. R. 1994; Evaluation of the activity of a number of antimicrobial agents against mycobacteria within mouse macrophages by a radiometric method. J Antimicrob Chemother 31:289–302
    [Google Scholar]
  5. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R. Jr 1994; inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230 [CrossRef]
    [Google Scholar]
  6. Barker K., Fan H., Carroll C., Kaplan G., Barker J., Hellmann W., Cohn Z. A. 1996; Nonadherent cultures of human monocytes kill Mycobacterium smegmatis, but adherent cultures do not. Infect Immun 64:428–433
    [Google Scholar]
  7. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole genome DNA microarray. Science 284:1520–1523 [CrossRef]
    [Google Scholar]
  8. Bermudez L. E., Champsi J. 1993; Infection with Mycobacterium avium induces production of interleukin-10, and administration of anti-IL-10 antibody is associated with enhanced resistance to infection in mice. Infect Immun 61:3093–3097
    [Google Scholar]
  9. Bourdet-Sicard R., Tran Van Nhieu G. 1999; Actin reorganisation by SipA and Salmonella invasion of epithelial cells. Trends Microbiol 7:309–310 [CrossRef]
    [Google Scholar]
  10. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  11. Buchmeier N. A., Heffron F. 1990; Induction of Salmonella stress proteins upon infection of macrophages. Science 248:730–732 [CrossRef]
    [Google Scholar]
  12. Burns-Keliher L. L., Portteus A., Curtiss R. 3rd 1997; Specific detection of Salmonella typhimurium proteins synthesized intracellularly. J Bacteriol 179:3604–3612
    [Google Scholar]
  13. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  14. Collins D. M., Kawakami R. P., de Lisle G. W., Pascopella L., Bloom B. R., Jacobs W. R. Jr 1995; Mutation of the principal σ factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 92:8036–8040 [CrossRef]
    [Google Scholar]
  15. Cunningham A. F., Spreadbury C. L. 1998; Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J Bacteriol 180:801–808
    [Google Scholar]
  16. Friedland J. S., Remick D. G., Shattock R., Griffin G. E. 1992; Secretion of interleukin-8 following phagocytosis of Mycobacterium tuberculosis by human monocyte cell lines. Eur J Immunol 22:1373–1378 [CrossRef]
    [Google Scholar]
  17. Friedland J. S., Shattock R., Griffin G. E. 1993; Phagocytosis of Mycobacterium tuberculosis or particulate stimuli by human monocytic cells induces equivalent monocyte chemoattractant protein-1 gene expression. Cytokine 5:150–156 [CrossRef]
    [Google Scholar]
  18. Gupta S., Tyagi A. K. 1993; Sequence of a newly identified Mycobacterium tuberculosis gene encoding a protein with sequence homology to virulence regulating proteins. Gene 126:157–158 [CrossRef]
    [Google Scholar]
  19. Hu Y. M., Butcher P. D., Sole K., Mitchison D. A., Coates A. R. 1998; Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS Microbiol Lett 158:139–145 [CrossRef]
    [Google Scholar]
  20. Humphery-Smith I., Cordwell S. J., Blackstock W. P. 1997; Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18:1217–1242 [CrossRef]
    [Google Scholar]
  21. Hunter S. W., Gaylord H., Brennan P. J. 1986; Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem 261:12345–12351
    [Google Scholar]
  22. Jensen O. N., Podtelejnikov A., Mann M. 1996; Delayed extraction improves specificity in database searches by matrix-assisted laser desorption/ionization peptide maps. Rapid Commun Mass Spectrom 10:1371–1378 [CrossRef]
    [Google Scholar]
  23. Jensen O. N., Wilm M., Shevchenko A., Mann M. 1999; Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. Methods Mol Biol 112:513–530
    [Google Scholar]
  24. Jungblut P. R., Schaible U. E., Mollenkopf H. J.7 other authors 1999; Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117
    [Google Scholar]
  25. Kantengwa S., Donati Y. R. A., Clerget M.7 other authors 1991; Heat shock proteins: an autoprotective mechanism for inflammatory cells?. Semin Immunol 3:49–56
    [Google Scholar]
  26. Kaufmann S. H. E. 1991; Heat shock proteins and pathogenesis of bacterial infections. Springer Semin Immunopathol 13:25–36 [CrossRef]
    [Google Scholar]
  27. Kaufmann S. H. E., Schoel B., van Embden J. D. A., Koga T., Wand-Wurttenberger A., Munk M. E., Steinhoff U. 1991; Heat-shock protein 60: implications for pathogenesis of and protection against bacterial infections. Immunol Rev 121:67–90 [CrossRef]
    [Google Scholar]
  28. Kinger A. K., Tyagi J. S. 1993; Identification and cloning of genes differentially expressed in the virulent strain of Mycobacterium tuberculosis. Gene 131:113–117 [CrossRef]
    [Google Scholar]
  29. Kwaik Y. A. 1998; Induced expression of the Legionella pneumophila gene encoding a 20-kilodalton protein during intracellular infection. Infect Immun 66:203–212
    [Google Scholar]
  30. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  31. Lee B.-Y., Horwitz M. A. 1995; Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J Clin Invest 96:245–249 [CrossRef]
    [Google Scholar]
  32. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282
    [Google Scholar]
  33. Mann M., Wilm M. 1994; Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66:4390–4399 [CrossRef]
    [Google Scholar]
  34. Mehta P. K., King C. H., White E. H., Murtagh J. J. Jr, Quinn F. D. 1996; Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun 64:2673–2679
    [Google Scholar]
  35. Mekalanos J. J. 1992; Environmental signals controlling gene expression of virulence determinants of bacteria. J Bacteriol 174:1–7
    [Google Scholar]
  36. Mistry Y., Young D. B., Mukherjee R. 1992; hsp70 synthesis in Schwann cells in response to heat shock and infection with Mycobacterium leprae. Infect Immun 60:3105–3110
    [Google Scholar]
  37. Mollenkopf H.-J., Jungblut P. R., Raupach B., Mattow J., Lamer S., Zimny-Arndt U., Schaible U. E., Kaufmann S. H. E. 1999; A dynamic bacterial two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 20:2172–2180 [CrossRef]
    [Google Scholar]
  38. Morrissey J. H. 1981; Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310 [CrossRef]
    [Google Scholar]
  39. O’Farrell P. H. 1975; High-resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021
    [Google Scholar]
  40. Pascopella L., Collins F. M., Martin J. M., Lee M. H., Hatfull G. F., Stover C. H., Bloom B. R., Jacobs W. R. Jr 1994; Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun 62:1313–1319
    [Google Scholar]
  41. Patel B. K. R., Banerjee D. K., Butcher P. D. 1991; Characterisation of the heat shock response in Mycobacterium bovis BCG. J Bacteriol 173:99–111
    [Google Scholar]
  42. Plum G., Clark-Curtiss J. E. 1994; Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun 62:476–483
    [Google Scholar]
  43. Plum G., Brenden M., Clark-Curtiss J. E., Pulverer G. 1997; Cloning, sequencing and expression of the mig gene of Mycobacterium avium, which codes for a secreted macrophage-induced protein. Infect Immun 65:4548–4557
    [Google Scholar]
  44. Polla B. S. 1988; A role for heat shock proteins in inflammation?. Immunol Today 9:134–137 [CrossRef]
    [Google Scholar]
  45. Shevchenko A., Wilm M., Vorm O., Mann M. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858 [CrossRef]
    [Google Scholar]
  46. Sturgill-Koszycki S., Haddix P. L., Russell D. G. 1997; The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18:2558–2565 [CrossRef]
    [Google Scholar]
  47. Tabira Y., Ohara N., Kitaura H., Matsumoto S., Naito M., Yamada T. 1998; The 16-kDa alpha-crystallin-like protein of Mycobacterium bovis BCG is produced under conditions of oxygen deficiency and is associated with ribosomes. Res Microbiol 149:255–264 [CrossRef]
    [Google Scholar]
  48. Tsuchiya S., Yambi M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. 1980; Establishment and characterisation of a human acute monocytic leukaemia cell line (THP-1). Int J Cancer 26:171–176 [CrossRef]
    [Google Scholar]
  49. Tsuchiya S., Kobayashi Y., Goto Y., Okumura H., Nakae S., Konno T., Tada K. 1982; Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530–1536
    [Google Scholar]
  50. Urquhart B. L., Atsalos T. E., Roach D., Basseal D. J., Bjellqvist B., Britton W. L., Humphery-Smith I. 1996; ‘Proteomic contigs’ of Mycobacterium tuberculosis and Mycobacterium bovis (BCG) using novel immobilised pH gradients. Electrophoresis 18:1384–1392
    [Google Scholar]
  51. Urquhart B. L., Cordwell S. J., Humphery-Smith I. 1998; Comparison of predicted and observed properties of proteins encoded in the genome of Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun 253:70–79 [CrossRef]
    [Google Scholar]
  52. Via L. E., Curcic R., Mudd M. H., Dhandayuthapani S., Ulmer R. J., Deretic V. 1996; Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J Bacteriol 178:3314–3321
    [Google Scholar]
  53. Wilm M., Mann M. 1994; Electrospray and taylor-cone theory, Dole’s beam of macromolecules at last?. Int J Mass Spectrom Ion Proc 136:167–180 [CrossRef]
    [Google Scholar]
  54. Wilm M., Mann M. 1996; Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8
    [Google Scholar]
  55. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. 1996; Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379:466–469 [CrossRef]
    [Google Scholar]
  56. Wilson T. M., de Lisle G. W., Collins D. M. 1995; Effects of inhA and katG on isoniazid resistance and virulence of Mycobacterium tuberculosis. Mol Microbiol 15:1009–1015 [CrossRef]
    [Google Scholar]
  57. Wong D. K., Lee B.-Y., Horwitz M. A., Gibson B. W. 1999; Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun 67:327–336
    [Google Scholar]
  58. Wren B. W., Colby S. M., Cubberley R. R., Pallen M. J. 1992; Degenerate PCR primers for the amplification of fragments from genes encoding response regulators from a range of pathogenic bacteria. FEMS Microbiol Lett 99:287–292 [CrossRef]
    [Google Scholar]
  59. Yuan Y., Crane D. D., Barry C. E. III. 1996; Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial α-crystallin homolog. J Bacteriol 178:4484–4492
    [Google Scholar]
  60. Yuan Y., Crane D. D., Simpson R. M., Zhu Y. Q., Hickey M. J., Sherman D. R., Barry C. E. 3rd 1998a; The 16-kDa alpha crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci USA 95:9578–9583 [CrossRef]
    [Google Scholar]
  61. Yuan Y., Zhu Y., Crane D. D., Barry C. E. 3rd 1998b; The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 29:1449–1458 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-459
Loading
/content/journal/micro/10.1099/00221287-147-2-459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error