1887

Abstract

Albicidins, a family of potent antibiotics and phytotoxins produced by the sugarcane leaf scald pathogen , inhibit DNA replication in bacteria and plastids. A gene located by Tn-tagging was confirmed by complementation to participate in albicidin biosynthesis. The gene () encodes a large protein (predicted 525695), with a modular architecture indicative of a multifunctional polyketide synthase (PKS) linked to a non-ribosomal peptide synthetase (NRPS). At 4801 amino acids in length, XabB is the largest reported PKS–NRPS. Twelve catalytic domains in this multifunctional enzyme are arranged in the order N terminus–acyl-CoA ligase (AL)–acyl carrier protein (ACP)–β-ketoacyl synthase (KS)–β-ketoacyl reductase (KR)–ACP–ACP–KS–peptidyl carrier protein (PCP)–condensation (C)–adenylation–PCP–C. The modular architecture of XabB indicates likely steps in albicidin biosynthesis and approaches to enhance antibiotic yield. The novel pattern of domains, in comparison with known PKS–NRPS enzymes for antibiotic production, also contributes to the knowledge base for rational design of enzymes producing novel antibiotics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-631
2001-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470631a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-631&mimeType=html&fmt=ahah

References

  1. Albertini A. M., Caramori T., Scoffone F., Scotti C., Galizzi A. 1995; Sequence around the 159° region of the Bacillus subtilis genome: the pksX locus spans 33·6 kb. Microbiology 141:299–309 [CrossRef]
    [Google Scholar]
  2. Aparicio J. F., Molnar I., Schwecke T., Konig A., Haydock S. F., Khaw L. E., Staunton J., Leadlay P. F. 1996; Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus : analysis of the enzymatic domains in the modular polyketide synthase. Gene 169:9–16 [CrossRef]
    [Google Scholar]
  3. Birch R. G., Patil S. S. 1983; The relation of blocked chloroplast differentiation to sugarcane leaf scald disease. Phytopathology 73:1368–1374 [CrossRef]
    [Google Scholar]
  4. Birch R. G., Patil S. S. 1985a; Antibiotic and process for the production thereof. US Patent 4525354 25 June 1985
    [Google Scholar]
  5. Birch R. G., Patil S. S. 1985b; Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli . J Gen Microbiol 131:1069–1075
    [Google Scholar]
  6. Birch R. G., Patil S. S. 1987a; Correlation between albicidin production and chlorosis induction by Xanthomonas albilineans , the sugarcane leaf scald pathogen. Physiol Mol Plant Pathol 30:199–206 [CrossRef]
    [Google Scholar]
  7. Birch R. G., Patil S. S. 1987b; Evidence that an albicidin-like phytotoxin induces chlorosis in sugarcane leaf scald disease by blocking plastid DNA replication. Physiol Mol Plant Pathol 30:207–214 [CrossRef]
    [Google Scholar]
  8. Birch R. G., Pemberton J. M., Basnayake W. V. 1990; Stable albicidin resistance in Escherichia coli involves an altered outer-membrane nucleoside uptake system. J Gen Microbiol 136:51–58 [CrossRef]
    [Google Scholar]
  9. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  10. Cane D. E., Walsh C. T., Khosla C. 1998; Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68 [CrossRef]
    [Google Scholar]
  11. Challis G. L., Ravel J., Townsend C. A. 2000; Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224 [CrossRef]
    [Google Scholar]
  12. Conti E., Stachelhaus T., Marahiel M. A., Brick P. 1997; Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183 [CrossRef]
    [Google Scholar]
  13. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl Acad Sci USA 77:7347–7351 [CrossRef]
    [Google Scholar]
  14. Donadio S., Staver M. J., McAlpine J. B., Swanson S. J., Katz L. 1991; Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679 [CrossRef]
    [Google Scholar]
  15. Duitman E. H., Hamoen L. W., Rembold M. 10 other authors 1999; The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299 [CrossRef]
    [Google Scholar]
  16. Fsihi H., Kottwitz B., Bremer E. 1993; Single amino acid substitutions affecting the substrate specificity of the Escherichia coli K-12 nucleoside-specific Tsx channel. J Biol Chem 268:17495–17503
    [Google Scholar]
  17. Gehring A. M., DeMoll E., Fetherston J. D., Mori I., Mayhew G. F., Blattner F. R., Walsh C. T., Perry R. D. 1998; Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis . Chem Biol 5:573–586 [CrossRef]
    [Google Scholar]
  18. Guenzi E., Galli G., Grgurina I., Gross D. C., Grandi G. 1998; Characterization of the syringomycin synthetase gene cluster: a link between prokaryotic and eukaryotic peptide synthetases. J Biol Chem 273:32857–32863 [CrossRef]
    [Google Scholar]
  19. Haese A., Schubert M., Herrmann M., Zocher R. 1993; Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N -methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol 7. 905–914 [CrossRef]
  20. Hopwood D. A. 1997; Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497 [CrossRef]
    [Google Scholar]
  21. Hopwood D. A., Sherman D. H. 1990; Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66 [CrossRef]
    [Google Scholar]
  22. Huang W., Jia J., Edwards P., Dehesh K., Schneider G., Lindqvist Y. 1998; Crystal structure of β-ketoacyl-acyl carrier protein synthase II from E. coli reveals the molecular architecture of condensing enzymes. EMBO J 17:1183–1191 [CrossRef]
    [Google Scholar]
  23. Huang G., Zhang L., Birch R. G. 2000a; Analysis of the genes flanking xabB : a methyltransferase gene is involved in albicidin biosynthesis in Xanthomonas albilineans . Gene 255:327–333 [CrossRef]
    [Google Scholar]
  24. Huang G., Zhang L., Birch R. G. 2000b; Albicidin antibiotic and phytotoxin biosynthesis in Xanthomonas albilineans requires a phosphopantetheinyl transferase gene. Gene 258:193–199 [CrossRef]
    [Google Scholar]
  25. Jefferson R. A. 1987; Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405 [CrossRef]
    [Google Scholar]
  26. Keating T. A., Walsh C. T. 1999; Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 3:598–606 [CrossRef]
    [Google Scholar]
  27. Konz D., Marahiel M. A. 1999; How do peptide synthetases generate structural diversity?. Chem Biol 6:R39–R48 [CrossRef]
    [Google Scholar]
  28. Lambalot R. H., Gehring A. M., Flugel R. S., Zuber P., LaCelle M., Marahiel M. A., Reid R., Khosla C., Walsh C. T. 1996; A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol 3:923–936 [CrossRef]
    [Google Scholar]
  29. McCarthy J. E. G., Gualerzi C. 1990; Translational control of prokaryotic gene expression. Trends Genet 6:78–85 [CrossRef]
    [Google Scholar]
  30. MacNeil D. J., Occi J. L., Gewain K. M., MacNeil T., Gibbons R. H., Ruby C. L., Danis A. J. 1992; Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115:119–125 [CrossRef]
    [Google Scholar]
  31. Marahiel M. A., Stachelhaus T., Mootz H. D. 1997; Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2673 [CrossRef]
    [Google Scholar]
  32. Mayorga M. E., Timberlake W. E. 1992; The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol Gen Genet 235:205–212 [CrossRef]
    [Google Scholar]
  33. Motamedi H., Shafiee A. 1998; The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256:528–534 [CrossRef]
    [Google Scholar]
  34. Nowak-Thompson B., Gould S. J., Loper J. E. 1997; Identification and sequence analysis of the genes encoding a polyketide synthase required for pyoluteorin biosynthesis in Pseudomonas fluorescens Pf-5. Gene 204:17–24 [CrossRef]
    [Google Scholar]
  35. Paitan Y., Alon G., Orr E., Ron E. Z., Rosenberg E. 1999; The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J Mol Biol 286:465–474 [CrossRef]
    [Google Scholar]
  36. Quadri L. E. N, Sello J., Keating T. A., Weinreb P. H., Walsh C. T. 1998; Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645 [CrossRef]
    [Google Scholar]
  37. Ricaud C., Ryan C. C. 1989; Leaf scald. In Diseases of Sugar Cane: Major Diseases pp 39–53 Edited by Ricaud C., Egan B. T., Hughes C. G., Gillaspie A. G. Jr Amsterdam: Elsevier;
    [Google Scholar]
  38. Rott P. C., Costet L., Davis M. J., Frutos R., Gabriel D. W. 1996; At least two separate gene clusters are involved in albicidin production by Xanthomonas albilineans. J Bacteriol 178:4590–4596
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  41. Scrutton N. S., Berry A., Perham R. N. 1990; Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43 [CrossRef]
    [Google Scholar]
  42. Shen B. 2000; Biosynthesis of aromatic polyketides. Top Curr Chem 209:1–51
    [Google Scholar]
  43. Stachelhaus T., Mootz H. D., Bergendahl V., Marahiel M. A. 1998; Peptide bond formation in nonribosomal peptide biosynthesis – catalytic role of the condensation domain. J Biol Chem 273:22773–22781 [CrossRef]
    [Google Scholar]
  44. Stachelhaus T., Mootz H. D., Marahiel M. A. 1999; The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505 [CrossRef]
    [Google Scholar]
  45. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794
    [Google Scholar]
  46. Takano Y., Kubo Y., Shimizu K., Mise K., Okuno T., Furusawa I. 1995; Structural analysis of PKS1 , a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium . Mol Gen Genet 249:162–167 [CrossRef]
    [Google Scholar]
  47. Tang L., Yoon Y. J., Choi C., Hutchinson C. R. 1998; Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Gene 216:255–265 [CrossRef]
    [Google Scholar]
  48. Turgay K., Krause M., Marahiel M. A. 1992; Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 6:529–546 [CrossRef]
    [Google Scholar]
  49. Van den Edde G. Deblaere R., Goethals K., Van Montagu M., Hosters M. 1992; Broad host range and promoter selection vectors for bacteria that interact with plants. Mol Plant–Microbe Interact 5:228–234 [CrossRef]
    [Google Scholar]
  50. Van Larebeke N., Genetello C., Hernalsteens J. P., Depicker A., Zaenen I., Messens E., Van Montagu M., Schell J. 1977; Transfer of Ti plasmids between Agrobacterium strains by mobilization with the conjugative plasmid RP4. Mol Gen Genet 152:119–124 [CrossRef]
    [Google Scholar]
  51. Wall M. K., Birch R. G. 1997; Genes for albicidin biosynthesis and resistance span at least 69 kb in the genome of Xanthomonas albilineans. Lett Appl Microbiol 24:256–260 [CrossRef]
    [Google Scholar]
  52. Xiao Y., Lu Y., Heu S., Hutcheson S. W. 1992; Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J Bacteriol 174:1734–1741
    [Google Scholar]
  53. Yu J. H., Leonard T. J. 1995; Sterigmatocystin biosynthesis in Aspergillus nidulans requires a novel type I polyketide synthase. J Bacteriol 177:4792–4800
    [Google Scholar]
  54. Zhang L., Birch R. G. 1997; The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane . Proc Natl Acad Sci USA. 949984–9989 [CrossRef]
  55. Zhang L., Xu J., Birch R. G. 1998; Factors affecting biosynthesis by Xanthomonas albilineans of albicidin antibiotics and phytotoxins. J Appl Microbiol 85:1023–1028 [CrossRef]
    [Google Scholar]
  56. Zhang L., Xu J., Birch R. G. 1999; Engineered detoxification confers resistance against a pathogenic bacterium. Nature Biotechnol 17:1021–1024 [CrossRef]
    [Google Scholar]
  57. Zocher R., Keller U. 1997; Thiol template peptide synthesis systems in bacteria and fungi. Adv Microb Physiol 38:85–131
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-631
Loading
/content/journal/micro/10.1099/00221287-147-3-631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error