1887

Abstract

Plantaricin W (Plw) is a new two-peptide bacteriocin, from , which inhibits a large number of Gram-positive bacteria. The two peptides, Plwα (comprising 29 residues) and Plwβ (comprising 32 residues), were isolated from the culture supernatants and characterized. The individual peptides had low antimicrobial activity but acted synergistically, and synergism was seen at all mixing ratios tested. The data indicate that the two peptides work in a 1:1 ratio. Chemical analyses showed that both peptides are lantibiotics, but two unmodified cysteines and one serine residue were present in Plwα, and Plwβ contained one cysteine residue. The Plw structural genes were sequenced and shown to encode prepeptides with sequence similarities to two other two-peptide lantibiotics, namely staphylococcin C55 and lacticin 3147. The conserved residues are mainly serines, threonines and cysteines that can be involved in intramolecular thioether bond formation in the C-terminal parts of the molecules. This indicates that these bacteriocins are members of a new family of lantibiotics with common bridging patterns, and that the ring structures play an important functional role. Based on the data a structural model is presented in which each peptide has a central lanthionine and two overlapping thioether bridges close to their C-termini.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-643
2001-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470643a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-643&mimeType=html&fmt=ahah

References

  1. Allison G. E., Fremaux C., Klaenhammer T. R. 1994; Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 176:2235–2241
    [Google Scholar]
  2. Anderson D. G., McKay L. L. 1983; Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552
    [Google Scholar]
  3. Anderssen E. L., Diep D. B., Nes I. F., Eijsink V. G. H., Nissen-Meyer J. 1998; Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64:2269–2272
    [Google Scholar]
  4. Casaus P., Nilsen T., Cintas L. M., Nes I. F., Holo H, Hernández P. E. 1997; Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294 [CrossRef]
    [Google Scholar]
  5. Cintas L. M., Rodriguez J. M., Fernandez M. F., Sletten K., Nes I. F., Hernandez P. E., Holo H. 1995; Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 61:2643–2648
    [Google Scholar]
  6. Cintas L. M., Casaus P., Holo H., Hernandez P. E., Nes I. F., Håvarstein L. S. 1998; Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994
    [Google Scholar]
  7. Cornwell G. G. 3d, Sletten K., Johansson B., Westermark P. 1988; Evidence that the amyloid fibril protein in senile systemic amyloidosis is derived from normal prealbumin. Biochem Biophys Res Commun 154:648–653 [CrossRef]
    [Google Scholar]
  8. Daeschel M. A., Nes I. F. 1994; Lactobacillus plantarum : physiology, genetics and applications in foods. In Food Biotechnology: Microorganisms pp 721–743 Edited by Hui Y. H., Khachatourians G. G. Weinheim: VCH;
    [Google Scholar]
  9. Diep D. B., Nissen-Meyer J., Nes I. F, Håvarstein L. S. 1994; The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr -like regulatory system. Appl Environ Microbiol 60:160–166
    [Google Scholar]
  10. Dougherty B. A., Hill C., Weidman J. F., Richardson D. R., Venter J. C., Ross R. P. 1998; Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol Microbiol 29:1029–1038 [CrossRef]
    [Google Scholar]
  11. Fykse E. M., Sletten K., Husby G., Cornwell G. G. 3d 1988; The primary structure of the variable region of an immunoglobin IV light-chain amyloid-fibril protein (AL GIL. Biochem J 256:973–980
    [Google Scholar]
  12. Gross E., Morell J. L. 1971; The structure of nisin. J Am Chem Soc 93:4634–4635 [CrossRef]
    [Google Scholar]
  13. Håvarstein L. S. Holo H., Nes I. F. 1994; The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140:2383–2389 [CrossRef]
    [Google Scholar]
  14. Håvarstein L. S. Diep D. B., Nes I. F. 1995; A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240 [CrossRef]
    [Google Scholar]
  15. Heidrich C., Pag U., Josten M., Metzger J., Jack R. W., Bierbaum G., Jung G., Sahl H. G. 1998; Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. Appl Environ Microbiol 64:3140–3146
    [Google Scholar]
  16. Holo H., Nilssen O., Nes I. F. 1991; Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris : isolation and characterization of the protein and its gene. J Bacteriol 173:3879–3887
    [Google Scholar]
  17. van den Hooven H. W. Doeland C. C., Van De Kamp M., Konings R. N., Hilbers C. W., Van De Ven F. J. 1996a; Three-dimensional structure of the lantibiotic nisin in the presence of membrane-mimetic micelles of dodecylphosphocholine and of sodium dodecylsulphate. Eur J Biochem 235:382–393 [CrossRef]
    [Google Scholar]
  18. van den Hooven H. W. Lagerwerf F. M., Heerma W., Haverkamp J., Piard J. C., Hilbers C. W., Siezen R. J., Kuipers O. P., Rollema H. S. 1996b; The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis : location of the thioether bridges. FEBS Lett 391:317–322 [CrossRef]
    [Google Scholar]
  19. Jack R. W., Tagg J. R., Ray B. 1995; Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200
    [Google Scholar]
  20. Jack R. W., Bierbaum G., Sahl H.-G. 1998 Lantibiotics and Related Peptides Berlin: Springer;
    [Google Scholar]
  21. Jiménez-Dı́az R. Ruiz-Barba J. L., Cathcart D. P., Holo H., Nes I. F., Sletten K. H., Warner P. J. 1995; Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microbiol 61:4459–4463
    [Google Scholar]
  22. Jung G. 1991; Lantibiotics – ribosomally synthesized biologically active polypeptides containing sulfide bridges and α,β-didehydroamino acids. Angew Chem Int Ed Engl 30:1051–1192 [CrossRef]
    [Google Scholar]
  23. Kaletta C., Entian K. D., Kellner R., Jung G., Reis M., Sahl H. G. 1989; Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence. Arch Microbiol 152:16–19 [CrossRef]
    [Google Scholar]
  24. van de Kamp M., van den Hooven H. W. Konings R. N. 7 other authors 1995; Elucidation of the primary structure of the lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Cloning and characterisation of the epilancin-K7-encoding gene and NMR analysis of mature epilancin K7. Eur J Biochem 230:587–600 [CrossRef]
    [Google Scholar]
  25. Kuipers O. P., Bierbaum G. 15 other authors Ottenwälder B. 1996; Protein engineering of lantibiotics. Antonie Leeuwenhoek 69:161–169 [CrossRef]
    [Google Scholar]
  26. Marciset O., Jeronimus-Stratingh M. C., Mollet B., Poolman B. 1997; Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J Biol Chem 272:14277–14284 [CrossRef]
    [Google Scholar]
  27. Meyer H. E., Heber M., Eisermann B., Korte H., Metzger J. W., Jung G. 1994; Sequence analysis of lantibiotics: chemical derivatization procedures allow a fast access to complete Edman degradation. Anal Biochem 223:185–190 [CrossRef]
    [Google Scholar]
  28. Moll G., Ubbink-Kok T., Hildeng-Hauge H., Nissen-Meyer J., Nes I. F., Konings W. N., Driessen A. J. 1996; Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J Bacteriol 178:600–605
    [Google Scholar]
  29. Navaratna M. A., Sahl H. G., Tagg J. R. 1998; Two-component anti- Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl Environ Microbiol 64:4803–4808
    [Google Scholar]
  30. Navaratna M. A., Sahl H. G., Tagg J. R. 1999; Identification of genes encoding two-component lantibiotic production in Staphylococcus aureus C55 and other phage group II S. aureus strains and demonstration of an association with the exfoliative toxin B gene. Infect Immun 67:4268–4271
    [Google Scholar]
  31. Nissen-Meyer J., Holo H., Sletten K., Nes I. F, Håvarstein L. S. 1992; A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 174:5686–5692
    [Google Scholar]
  32. Paik S. H., Chakicherla A., Hansen J. N. 1998; Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142 [CrossRef]
    [Google Scholar]
  33. Ryan M. P., Rea M. C., Hill C., Ross R. P. 1996; An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62:612–619
    [Google Scholar]
  34. Ryan M. P., Meaney W. J., Ross R. P., Hill C. 1998; Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl Environ Microbiol 64:2287–2290
    [Google Scholar]
  35. Ryan M. P., Jack R. W., Josten M., Sahl H.-G., Jung G., Ross R. P., Hill C. 1999; Extensive post-translational modification, including serine to d-alanine conversion, in the two-component lantibiotic, lacticin 3147. J Biol Chem 274:37544–37550 [CrossRef]
    [Google Scholar]
  36. Sahl H. G., Jack R. W., Bierbaum G. 1995; Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230:827–853 [CrossRef]
    [Google Scholar]
  37. Skaugen M., Nissen-Meyer J., Jung G., Stevanovic S., Sletten K., Inger C., Abildgaard M., Nes I. F. 1994; In vivo conversion of l-serine to d-alanine in a ribosomally synthesized polypeptide. J Biol Chem 269:27183–27185
    [Google Scholar]
  38. de Vos W. M. Kuipers O. P., Siezen R. J, van der Meer J. R. 1995; Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by Gram-positive bacteria. Mol Microbiol 17:427–437 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-643
Loading
/content/journal/micro/10.1099/00221287-147-3-643
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error