1887

Abstract

Mycobacteria are likely to encounter acidic pH in the environments they inhabit; however intracellular pH homeostasis has not been investigated in these bacteria. In this study, and [Bacille Calmette–Guérin (BCG)] were used as examples of fast- and slow-growing mycobacteria, respectively, to study biochemical and physiological responses to acidic pH. and BCG were able to grow at pH values of 45 and 50, respectively, suggesting the ability to regulate internal pH. Both species of mycobacteria maintained their internal pH between pH 61 and 72 when exposed to decreasing external pH and the maximum ΔpH observed was approximately 21 to 23 units for both bacteria. The ΔpH of at external pH 50 was dissipated by protonophores (e.g. carbonyl cyanide -chlorophenylhydrazone), ionophores (e.g. monensin and nigericin) and ,′-dicyclohexylcarbodiimide (DCCD), an inhibitor of the proton-translocating FF-ATPase. These results demonstrate that permeability of the cytoplasmic membrane to protons and proton extrusion by the FF-ATPase plays a key role in maintaining internal pH near neutral. Correlations between measured internal pH and cell viability indicated that the lethal internal pH for both strains of mycobacteria was less than pH 60. Compounds that decreased internal pH caused a rapid decrease in cell survival at acidic pH, but not at neutral pH. These data indicate that both strains of mycobacteria exhibit intracellular pH homeostasis and this was crucial for the survival of these bacteria at acidic pH values.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-1017
2001-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1471017a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-1017&mimeType=html&fmt=ahah

References

  1. Amachi S., Ishikawa K., Toyoda S., Kagawa Y., Yokota A., Tomita F. 1998; Characterization of a mutant of Lactococcus lactis with reduced membrane-bound ATPase activity under acidic conditions. Biosci Biotechnol Biochem 62:1574–1580 [CrossRef]
    [Google Scholar]
  2. Bakker E. P., Mangerich W. E. 1981; Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. J Bacteriol 147:820–826
    [Google Scholar]
  3. Baronofsky J. J., Schreurs W. J. A., Kashket E. R. 1984; Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum . Appl Environ Microbiol 48:1134–1139
    [Google Scholar]
  4. Basu J., Chattopadhyay R., Kundu M., Chakrabarti P. 1992; Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis . J Bacteriol 174:4829–4832
    [Google Scholar]
  5. Bearson S., Bearson B., Foster J. W. 1997; Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180 [CrossRef]
    [Google Scholar]
  6. Bloom B. R., Murray C. J. L. 1992; Tuberculosis: commentary on a re-emergent killer. Science 257:1055–1064 [CrossRef]
    [Google Scholar]
  7. Booth I. R. 1985; Regulation of cytoplasmic pH. Microbiol Rev 49:359–378
    [Google Scholar]
  8. Carneiro de Melo A. M. S. Cook G. M., Poole R. K., Miles R. J. 1996; Nisin stimulates oxygen consumption by Staphylococcus aureus and Escherichia coli . Appl Environ Microbiol 62:1831–1834
    [Google Scholar]
  9. Chapman J. S., Bernard J. S. 1962; The tolerances of unclassified mycobacteria. Am Rev Respir Dis 86:582–583
    [Google Scholar]
  10. Choudhuri B. S., Sen S., Chakrabarti P. 1999; Isoniazid accumulation in Mycobacterium smegmatis is modulated by proton motive force-driven and ATP-dependent extrusion systems. Biochem Biophys Res Commun 256:682–684 [CrossRef]
    [Google Scholar]
  11. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  12. Datta A. R., Benjamin M. M. 1997; Factors controlling acid tolerance of Listeria monocytogenes : effects of nisin and other ionophores. Appl Environ Microbiol 63:4123–4126
    [Google Scholar]
  13. De Rossi E., Branzoni M., Cantoni R., Milano A., Riccardi G., Ciferri O. 1998; mmr , a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 180:6068–6071
    [Google Scholar]
  14. Foster J. W., Hall H. K. 1990; Adaptive acidification tolerance response of Salmonella typhimurium . J Bacteriol 172:771–778
    [Google Scholar]
  15. Foster J. W., Hall H. K. 1991; Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 173:5129–5135
    [Google Scholar]
  16. Harold F. M., Pavlasova E., Baarda J. R. 1970; A transmembrane pH gradient in Streptococcus faecalis : origin, and dissipation by proton conductors and N,N′-dicyclohexylcarbodiimide. Biochim Biophys Acta 196:235–244 [CrossRef]
    [Google Scholar]
  17. Iivanainen E., Martikainen P. J., Vaananen P., Katila M. L. 1999; Environmental factors affecting the occurrence of mycobacteria in brook sediments. J Appl Microbiol 86:673–681 [CrossRef]
    [Google Scholar]
  18. Kashket E. R. 1985; The proton motive force in bacteria: a critical assessment of methods. Annu Rev Microbiol 39:219–242 [CrossRef]
    [Google Scholar]
  19. Kasimoglu E., Park S. J., Malek J., Tseng C. P., Gunsalus R. P. 1996; Transcriptional regulation of the proton-translocating ATPase ( atpIBEFHAGDC ) operon of Escherichia coli : control by cell growth rate. J Bacteriol 178:5563–5567
    [Google Scholar]
  20. Kobayashi H., Anraku Y. 1972; Membrane-bound adenosine triphosphatase of Escherichia coli . J Biochem 71:387–399
    [Google Scholar]
  21. Kobayashi H., Suzuki T., Kinoshita N., Unemoto T. 1984; Amplification of the Streptococcus faecalis proton-translocating ATPase by a decrease in cytoplasmic pH. J Bacteriol 158:1157–1160
    [Google Scholar]
  22. Kobayashi H., Suzuki T., Unemoto T. 1986; Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton-translocating ATPase. J Biol Chem 261:627–630
    [Google Scholar]
  23. Kullen M. J., Klaenhammer T. R., Brady L. J., O’Sullivan D. J., Amann M. M., O’Shaughnessy M. J., Busta F. F. 1999; Identification of the pH-inducible, proton-translocating F1F0-ATPase ( atpBEFHAGDC ) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol 33:1152–1161
    [Google Scholar]
  24. McGowan C. C., Necheva A., Thompson S. A., Cover T. L., Blaser M. J. 1998; Acid-induced expression of an LPS-associated gene in Helicobacter pylori . Mol Microbiol 30:19–31 [CrossRef]
    [Google Scholar]
  25. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210 [CrossRef]
    [Google Scholar]
  26. Miwa T., Esaki H., Umemori J., Hino T. 1997; Activity of H(+)-ATPase in ruminal bacteria with special reference to acid tolerance. Appl Environ Microbiol 63:2155–2158
    [Google Scholar]
  27. Nannen N. L., Hutkins R. W. 1991; Proton-translocating adenosine triphosphatase activity in lactic acid bacteria. J Dairy Sci 74:747–751 [CrossRef]
    [Google Scholar]
  28. O’Brien L. M., Gordon S. V., Roberts I. S., Andrew P. W. 1996; Response of Mycobacterium smegmatis to acid stress. FEMS Microbiol Lett 139:11–17 [CrossRef]
    [Google Scholar]
  29. Oh Y. K., Straubinger R. M. 1996; Intracellular fate of Mycobacterium avium : use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction. Infect Immun 64:319–325
    [Google Scholar]
  30. Piddington D. L., Kashkouli A., Buchmeier N. A. 2000; Growth of Mycobacterium tuberculosis in a defined medium is very restricted by acid pH and Mg(2+) levels. Infect Immun 68:4518–4522 [CrossRef]
    [Google Scholar]
  31. Portaels F., Pattyn S. R. 1982; Growth of mycobacteria in relation to the pH of the medium. Ann Inst Pasteur 133B:213–221
    [Google Scholar]
  32. Pressman B. C. 1976; Biological applications of ionophores. Annu Rev Biochem 45:501–530 [CrossRef]
    [Google Scholar]
  33. Reibeling V., Thauer R. K., Jungermann K. 1975; The internal-alkaline pH gradient, sensitive to uncoupler at ATPase inhibitor, in growing Clostridium pasteurianum . Eur J Biochem 55:445–453 [CrossRef]
    [Google Scholar]
  34. Santana M., Ionescu M. S., Vertes A., Longin R., Kunst F., Danchin A., Glaser P. 1994; Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 176:6802–6811
    [Google Scholar]
  35. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919 [CrossRef]
    [Google Scholar]
  36. Sturgill-Koszycki S., Schlesinger P. H., Chakraborty P. 7 other authors 1994; Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263 678–681
    [Google Scholar]
  37. Terracciano J. S., Kashket E. R. 1986; Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum . Appl Environ Microbiol 52:86–91
    [Google Scholar]
  38. Zhang Y., Scorpio A., Nikaido H., Sun Z. 1999; Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol 181:2044–2049
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-1017
Loading
/content/journal/micro/10.1099/00221287-147-4-1017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error