1887

Abstract

B4 has a transport system for glucose and mannose, but β-glucanase expression is only catabolite-repressed by glucose. . B4 cell extracts had ATP-dependent gluco- and mannokinase activities, and significant phosphoenolpyruvate- or GTP-dependent hexose phosphorylation was not observed. Mannose inhibited glucose phosphorylation (and vice versa), and activity gels indicated that a single protein was responsible for both activities. Glucose was phosphorylated at a faster rate than was mannose [ 280 nmol hexose (mg protein) min versus 60 nmol hexose (mg protein) min, respectively] and glucose was a better substrate for the kinase ( 012 mM versus 12 mM, respectively). The purified glucomannokinase (1250-fold) had a molecular mass of 68 kDa, but SDS-PAGE gels indicated that it was a dimer (monomer 345 kDa). The N-terminus (25 residues) had an 8 amino acid segment that was homologous to other bacterial glucokinases. The glucomannokinase was competitively inhibited by the nonmetabolizable glucose analogue 2-deoxyglucose (2DG), and cells grown with glucose and 2DG had lower rates of glucose consumption than did cells given only glucose. When the ratio of 2DG to glucose was increased, the glucose consumption rate decreased and the β-glucanase activity increased. The glucose consumption rate and the glucomannokinase activity of cells treated with 2DG were highly correlated ( =098). This result suggested that glucomannokinase activity was either directly or indirectly regulating β-glucanase expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-1035
2001-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1471035a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-1035&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Angell S., Schwarz E., Bibb M. J. 1992; The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6:2833–2844 [CrossRef]
    [Google Scholar]
  3. Avgustin G., Wallace R. J., Flint H. J. 1997; Phenotypic diversity among ruminal isolates of Prevotella ruminicola : proposal of Prevotella brevis sp.nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola . Int J Syst Bacteriol 47:284–288 [CrossRef]
    [Google Scholar]
  4. Barman T. E. 1969 The Enzyme Handbook vol. 1 New York: Springer;
    [Google Scholar]
  5. Barnell W. O., Yi K. C., Conway T. 1990; Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. J Bacteriol 172:7227–7240
    [Google Scholar]
  6. Bennett W. S. Jr, Steitz T. A. 1978; Glucose-induced conformational change in the yeast hexokinase. Proc Natl Acad Sci USA 75:4848–4852 [CrossRef]
    [Google Scholar]
  7. Bryant M. P., Small N., Bouma C., Chu H. 1958; Bacteroides ruminicola n. sp. and Succinimonas amylolytica , a new genus and species. J Bacteriol 76:15–23
    [Google Scholar]
  8. Cardenas M. L., Cornish-Bowden A., Ureta T. 1998; Evolution and regulatory role of the hexokinases. Biochim Biophys Acta 1401242–264 [CrossRef]
    [Google Scholar]
  9. Cotta M. A., Wheeler M. B., Whitehead T. R. 1994; Cyclic AMP in ruminal and other anaerobic bacteria. FEMS Microbiol Lett 124:355–360 [CrossRef]
    [Google Scholar]
  10. Englard S., Seifter S. 1990; Precipitation techniques. In Guide to Protein Purification pp 285–300 Edited by Deutscher M. P. San Diego: Academic Press;
    [Google Scholar]
  11. Essenberg R. C. 1995; Cloning and characterization of the glucokinase gene of Brucella abortus 19 and identification of three other genes. J Bacteriol 177:6297–6300
    [Google Scholar]
  12. Fields M. W., Russell J. B. 2000; Alternative pathways of glucose transport in Prevotella bryantii B14. FEMS Microbiol Lett 183:137–142 [CrossRef]
    [Google Scholar]
  13. Fields M. W., Russell J. B., Wilson D. B. 1997; A mutant of Prevotella ruminicola B14 deficient in β-1,4-endoglucanase and mannanase activities. FEMS Microbiol Lett 154:9–15 [CrossRef]
    [Google Scholar]
  14. Fukuda Y., Yamaguchi S., Shimoska M., Murata K., Kimura A. 1984; Purification and characterization of glucokinase in Escherichia coli B. Agric Biol Chem 48:2541–2548 [CrossRef]
    [Google Scholar]
  15. Gardner R. G., Wells J. E., Russell J. B., Wilson D. B. 1995; The effect of carbohydrates on the expression of the Prevotella ruminicola 1,4-β-d-endoglucanase. FEMS Microbiol Lett 125:305–310
    [Google Scholar]
  16. Gish W., States D. J. 1993; Identification of protein coding regions by database similarity search. Nat Genet 3:266–272 [CrossRef]
    [Google Scholar]
  17. Glass T. L., Sherwood J. S. 1994; Phosphorylation of glucose by a guanosine-5′-triphosphate (GTP)-dependent glucokinase in Fibrobacter succinogenes subsp. succinogenes S85. Arch Microbiol 162:180–186
    [Google Scholar]
  18. Jones B. E., Dossonnet V., Kuster E., Hillen W., Deutscher J., Klevit R. E. 1997; Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272:26530–26535 [CrossRef]
    [Google Scholar]
  19. Kwakman J. H. J. M., Postma P. W. 1994; Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor . J Bacteriol 176:2694–2698
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  21. Magasanik B. 1976; Classical and postclassical modes of regulation of the synthesis of degradative bacterial enzymes. Prog Nucleic Acid Res Mol Biol 17:99–115
    [Google Scholar]
  22. Martin S. A., Russell J. B. 1986; Phosphoenolpyruvate-dependent phosphorylation of hexoses by rumen bacteria: evidence for the phosphotransferase system of transport . Appl Environ Microbiol 52:1348–1352
    [Google Scholar]
  23. Martinez-Barajas E., Randall D. D. 1998; Purification and characterization of a glucokinase from young tomato ( Lycopersicon esculentum L. Mill) fruit. Planta 205:567–573 [CrossRef]
    [Google Scholar]
  24. Peterkofsky A. 1976; Cyclic nucleotides in bacteria. In Advances in Cyclic Nucleotide Research Edited by Robison P. G., Robison G. A. New York: Raven Press;
    [Google Scholar]
  25. Postma P. W., Lengeler J. W., Jacabson G. R. 1993; Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  26. Romano A. H., Trifone J. D., Brustolon M. 1979; Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in fermentative bacteria. J Bacteriol 139:93–97
    [Google Scholar]
  27. Rosana-Ani L., Skarlatos P., Dahl M. K. 1999; Putative contribution of glucose kinase from Bacillus subtilis to carbon catabolite repression (CCR): a link between enzymatic regulation and CCR?. FEMS Microbiol Lett 171:89–96 [CrossRef]
    [Google Scholar]
  28. Russell J. B., Strobel H. J. 1990; ATPase-dependent energy spilling by the ruminal bacterium, Streptococcus bovis . Arch Microbiol 153:378–383 [CrossRef]
    [Google Scholar]
  29. Sabater B., Sebastian J., Asensio C. 1972; Identification and properties of an inducible mannokinase from Streptomyces violaceoruber . Biochim Biophys Acta 284:406–413 [CrossRef]
    [Google Scholar]
  30. Saier M. H. Jr, Chauvaux S., Cook G. M., Deutscher J., Paulsen T., Reizer J., Ye J. J. 1996; Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142:217–230 [CrossRef]
    [Google Scholar]
  31. Sebastian J., Asensio C. 1967; Identification of a mannokinase in Escherichia coli. Biochem Biophys Res Commun. 28197–202 [CrossRef]
  32. Shah H. N., Collins D. M. 1990; Prevotella , new genus to include Bacteroides melaninogeicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40:205–208 [CrossRef]
    [Google Scholar]
  33. Shoemaker N. B., Anderson K. L., Smithson S. L., Wang G.-R., Salyers A. A. 1991; Conjugal transfer of a shuttle vector from the human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella ruminicola B14. Appl Environ Microbiol 57:2114–2120
    [Google Scholar]
  34. Spath C., Kraus A., Hillen W. 1997; Contribution of glucose kinase to glucose repression of xylose utilization in Bacillus megaterium . J Bacteriol 179:7603–7605
    [Google Scholar]
  35. Titgemeyer F., Reizer J., Reizer A., Saier M. H. Jr 1994; Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140:2349–2354 [CrossRef]
    [Google Scholar]
  36. Van Gylswyk N. O. 1990; Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets . FEMS Microbiol Ecol 73:243–254 [CrossRef]
    [Google Scholar]
  37. Wagner E., Marcandier S., Egeter O., Deutscher J., Gotz F., Bruckner R. 1995; Glucose kinase-dependent catabolite repression in Staphylococcus xylosus . J Bacteriol 177:6144–6152
    [Google Scholar]
  38. Whitford M. F., Forster R. J., Beard C. E., Gong J., Teather R. M. 1998; Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163 [CrossRef]
    [Google Scholar]
  39. Wood J., Scott K. P., Avgustin G., Newbold C. J., Flint H. J. 1998; Estimation of the relative abundance of different Bacteroides and Prevotella ribotypes in gut samples by restriction enzyme profiling of PCR-amplified 16S rRNA gene sequences . Appl Environ Microbiol 64:3683–3689
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-1035
Loading
/content/journal/micro/10.1099/00221287-147-4-1035
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error