1887

Abstract

The mevinolin-resistance determinant, , encodes the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and is a commonly used selectable marker in halobacterial genetics. Plasmids bearing this marker suffer from instability in because the resistance gene was derived from the genome of this species and is almost identical in sequence to the chromosomal copy. In order to reduce the level of homologous recombination between introduced plasmid vectors and the chromosome of , a homologue of the determinant was obtained from the distantly related organism, . The nucleotide sequences of the wild-type genes () of these two species are only 78% identical, and the predicted protein sequences show 71% identity. In comparison to the wild-type gene, the resistance gene from a mutant resistant to simvastatin (an analogue of mevinolin) showed a single base substitution in the putative promoter. Plasmids constructed using the new resistance determinant were stably maintained under selection in and possessed very low recombination rates with the chromosome of this species. In addition, an improved strain of was developed to overcome the plasmid instability and growth reduction observed in the commonly used WFD11 strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-959
2001-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470959a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-959&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. editors 1989 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Cabrera J. A., Bolds J., Shields P. E., Havel C. M., Watson J. A. 1986; Isoprenoid synthesis in Halobacterium halobium . Modulation of 3-hydroxy-3-methylglutaryl coenzyme A concentration in response to mevalonate availability. J Biol Chem 261:3578–3583
    [Google Scholar]
  3. Charlebois R. L., Lam W. L., Cline S. W., Doolittle W. F. 1987; Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc Natl Acad Sci USA 84:8530–8534 [CrossRef]
    [Google Scholar]
  4. Charlebois R. L., Schalkwyk L. C., Hofman J. D., Doolittle W. F. 1991; Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2. J Mol Biol 222:509–524 [CrossRef]
    [Google Scholar]
  5. Cline S. W., Doolittle W. F. 1992; Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons. J Bacteriol 174:1076–1080
    [Google Scholar]
  6. Cline S. W., Lam W. L., Charlebois R. L., Schalkwyk L. C., Doolittle W. F. 1989; Transformation methods for halophilic archaebacteria. Can J Microbiol 35:148–152 [CrossRef]
    [Google Scholar]
  7. Danner S., Soppa J. 1996; Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol Microbiol 19:1265–1276 [CrossRef]
    [Google Scholar]
  8. Dyall-Smith M. L., Doolittle W. F. 1994; Construction of composite transposons for halophilic archaea. Can J Microbiol 40:922–929 [CrossRef]
    [Google Scholar]
  9. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  10. Hilpert R., Winter J., Hammes W., Kandler O. 1981; The sensitivity of archaebacteria to antibiotics. Zentbl Bakteriol Hyg 1 Abt Orig C 2:11–20
    [Google Scholar]
  11. Holmes M. L., Dyall-Smith M. L. 1990; A plasmid vector with a selectable marker for halophilic archaebacteria. J Bacteriol 172:756–761
    [Google Scholar]
  12. Holmes M., Pfeifer F., Dyall-Smith M. L. 1994; Improved shuttle vectors for Haloferax volcanii including a dual-resistance plasmid. Gene 146:117–121 [CrossRef]
    [Google Scholar]
  13. Lam W. L., Doolittle W. F. 1989; Shuttle vectors for the archaebacterium Halobacterium volcanii . Proc Natl Acad Sci USA 86:5478–5482 [CrossRef]
    [Google Scholar]
  14. Lam W. L., Doolittle W. F. 1992; Mevinolin-resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the archaebacterium Haloferax volcanii . J Biol Chem 267:5829–5834
    [Google Scholar]
  15. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Nuttall S. D., Deutschel S. E., Irving R. A., Serrano-Gomicia J. A., Dyall-Smith M. L. 2000; The ShBle resistance determinant is expressed in Haloferax volcanii and confers resistance to bleomycin. Biochem J 346:251–254 [CrossRef]
    [Google Scholar]
  17. Ortenberg R., Tchelet T., Mevarech M. 1999; A model for the genetic exchange system of the extremely halophilic archaeaon Haloferax volcanii . In Microbiology and Biogeochemistry of Hypersaline Environments pp 331–338 Edited by Oren A. Boca Raton, FL: CRC Press;
    [Google Scholar]
  18. Palmer J. R., Daniels C. J. 1995; In vivo definition of an archaeal promoter. J Bacteriol 177:1844–1849
    [Google Scholar]
  19. Reiter W. D., Hudepohl U., Zillig W. 1990; Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci USA 87:9509–9513 [CrossRef]
    [Google Scholar]
  20. Sahm D. F., Washington J. A.II. 1991; Antibacterial susceptibility tests: dilution methods. In Manual of Clinical Microbiology pp 1105–1116 Edited by Balows A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Soppa J. 1999; Transcription initiation in Archaea: facts, factors and future aspects. Mol Microbiol 31:1295–1305 [CrossRef]
    [Google Scholar]
  22. Torreblanca M., Rodriguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M. 1986; Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen.nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99 [CrossRef]
    [Google Scholar]
  23. Vieira J., Messing J. 1991; New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194 [CrossRef]
    [Google Scholar]
  24. Wang Y., Darnay B. G., Rodwell V. W. 1990; Identification of the principal catalytically important acidic residue of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 265:21634–21641
    [Google Scholar]
  25. Woods W. G., Dyall-Smith M. L. 1997; Construction and analysis of a recombination-deficient ( radA ) mutant of Haloferax volcanii . Mol Microbiol 23:791–797 [CrossRef]
    [Google Scholar]
  26. Yanisch-Perron L., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  27. Zusman T., Rosenshine I., Boehm G., Jaenicke R., Leskiw B., Mevarech M. 1989; Dihydrofolate reductase of the extremely halophilic archaebacterium Halobacterium volcanii . The enzyme and its coding gene. J Biol Chem 264:18878–18883
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-959
Loading
/content/journal/micro/10.1099/00221287-147-4-959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error