1887

Abstract

Digestibility of fibre in ruminants may be improved by the introduction of highly fibrolytic strains of ruminal bacteria. This approach may be feasible if, for example, strains of that are significantly more fibrolytic than the normal population of are used for inoculation purposes. Introduced strains of bacteria, irrespective of ecosystem, often decline after inoculation, and in this study, highly fibrolytic strains of were continuously dosed to ensure that measurements of fibre digestion were made in the presence of significant numbers of the introduced bacteria. During dosing the total culturable count increased significantly (<005), but declined post-dosing. The level of dosed , and total , and eukaryotes measured by 16S rRNA probes increased significantly (<005) during the dosing period, but also declined post-dosing. When nylon bag digestibility, feed intake or whole-tract digestibility was measured, no improvement could be measured.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1719
2001-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471719a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1719&mimeType=html&fmt=ahah

References

  1. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. 1996; The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559
    [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A. 1990; Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770
    [Google Scholar]
  3. Attwood G. T., Lockington R. A., Xue G. P., Brooker G. P. 1988; Use of a unique gene sequence as a probe to enumerate a strain of Bacteroides ruminicola introduced into the rumen. Appl Environ Microbiol 54:534–539
    [Google Scholar]
  4. Beever D. E., Prescott J. H. D., Armstrong D. G, Coelho da Silva J. F. 1972; The effect in sheep of physical form and stage of growth on the sites of digestion of a dried grass. 1. Sites of digestion of organic matter, energy and carbohydrate. Br J Nutr 28:347–356 [CrossRef]
    [Google Scholar]
  5. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328
    [Google Scholar]
  6. Caldwell D. E., Wolfaardt G. M., Korber D. R., Lawrence J. R. 1997; Do bacterial communities transcend Darwinism?. In Advances in Microbial Ecology pp 105–191 Edited by Jones J. W. New York: Plenum;
    [Google Scholar]
  7. Coleman G. S., Sandford D. C. 1979; The engulfment and digestion of mixed rumen bacterial species by single and mixed species of rumen ciliate protozoa grown in vivo . J Agric Sci 92:729–742 [CrossRef]
    [Google Scholar]
  8. Dehority B. A. 1973; Hemicellulose degradation by rumen bacteria. Fed Proc 32:1819–1824
    [Google Scholar]
  9. Dehority B. A., Scott H. W. 1967; Extent of cellulose and hemicellulose digestion in various forages by pure cultures of cellulolytic rumen bacteria. J Dairy Sci 50:1136–1141 [CrossRef]
    [Google Scholar]
  10. Dehority B. A., Tirabasso P. A. 1998; Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. J Anim Sci 76:2905–2911
    [Google Scholar]
  11. Flint H. J., Bisset J., Webb J. 1989; Use of antibiotic resistance mutations to track strains of obligately anaerobic bacteria introduced into the rumen of sheep. J Appl Bacteriol 67:177–183 [CrossRef]
    [Google Scholar]
  12. Forsberg C. W., Cheng K. J., White B. A. 1997; Polysaccharide degradation in the rumen and large intestine. In Gastrointestinal Microbiology pp 319–379 Edited by Mackie R. I., White B. A. New York: Chapman & Hall;
    [Google Scholar]
  13. Fox G. F., Wisotzkey J. D., Jurtshuk J. P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  14. Helaszek C. T., White B. A. 1991; Cellobiose uptake and metabolism by Ruminococcus flavefaciens . Appl Environ Microbiol 57:64–68
    [Google Scholar]
  15. Hespell R. B., Akin D. E., Dehority B. A. 1997; Bacteria, fungi, and protozoa of the rumen. In Gastrointestinal Microbiology pp 59–141 Edited by Mackie R. I., White B. A., Isaacson R. E. New York: Chapman & Hall;
    [Google Scholar]
  16. Hicks R. E., Amann R. I., Stahl D. A. 1992; Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S-rRNA sequences. Appl Environ Microbiol 58:2158–2163
    [Google Scholar]
  17. Hungate R. E. 1950; The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49
    [Google Scholar]
  18. Hungate R. E. 1984; Microbes of nutritional importance in the alimentary tract. Proc Nutr Soc 43:1–11
    [Google Scholar]
  19. Kalmokoff M. L., Teather R. M. 1997; Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens . Appl Environ Microbiol 63:394–402
    [Google Scholar]
  20. Krause D. O., Russell J. B. 1996; An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination. Appl Environ Microbiol 62:815–821
    [Google Scholar]
  21. Krause D. O., Bunch R. J., Smith J. M., McSweeney C. S. 1999a; Diversity of Ruminococcus strains: a survey of genetic polymorphisms and plant digesting ability. J Appl Bacteriol 86:487–495 [CrossRef]
    [Google Scholar]
  22. Krause D. O., Dalrymple B. P., Smith W. J., Mackie R. I., McSweeney C. S. 1999b; 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens : design of a signature probe and its application in adult sheep. Microbiology 145:1797–1807 [CrossRef]
    [Google Scholar]
  23. Krause D. O., Smith W. J. M., Ryan F. M. E., Mackie R. I., McSweeney C. S. 1999c; Use of 16S-rRNA based techniques to investigate the ecological succession of microbial populations in the immature lamb rumen: tracking of a specific strain of inoculated Ruminococcus and interactions with other microbial populations in vivo . Microb Ecol 38:365–376 [CrossRef]
    [Google Scholar]
  24. Lin C., Flesher B., Capman W. C., Amann R. I., Stahl D. A. 1994; Taxon specific hybridization probes for fibre-digesting bacteria suggest novel gut-associated Fibrobacter . Syst Appl Microbiol 17:418–424 [CrossRef]
    [Google Scholar]
  25. Lin C., Raskin L., Stahl D. A. 1996; Microbial community structure in gastrointestinal tracts of domestic animals: comparative analysis using rRNA-targeted oligonucleotide probes. FEMS Microbiol Ecol 22:281–294
    [Google Scholar]
  26. Littell R. C., Henry P. R., Ammerman C. B. 1998; Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76:1216–1231
    [Google Scholar]
  27. Mackie R. I., Wilkens C. A. 1988; Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract. Appl Environ Microbiol 54:2155–2160
    [Google Scholar]
  28. McSweeney C. S. 1989; Cannulation of the rumen in cattle and buffaloes. Aust Vet J 66:266–268 [CrossRef]
    [Google Scholar]
  29. McSweeney C. S., Palmer B., Bunch R., Krause D. O. 2001; Effect of the tropical forage calliandra on microbial protein synthesis and ecology in the rumen. J Appl Microbiol 90:78–88 [CrossRef]
    [Google Scholar]
  30. Miller T. L., Wolin M. J. 1979; Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr 32:164–172
    [Google Scholar]
  31. Miyagi T., Kaneichi K., Aminov R. I., Kobayashi Y., Sakka K., Hoshino S., Ohmiya K. 1995; Enumeration of transconjugated Ruminococcus albus and its survival in the goat rumen ecosystem. Appl Environ Microbiol 61:2030–2032
    [Google Scholar]
  32. Newbold C. J., Hillman K. 1990; The effect of ciliate protozoa on the turnover of bacterial and fungal protein in the rumen of sheep. Lett Appl Microbiol 11:100–102 [CrossRef]
    [Google Scholar]
  33. Nielsen P. E. 1999; Applications of peptide nucleic acids. Curr Opin Biotechnol 10:71–75 [CrossRef]
    [Google Scholar]
  34. Odenyo A. A., Mackie R. I., Stahl D. A., White B. A. 1994a; The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl Environ Microbiol 60:3688–3696
    [Google Scholar]
  35. Odenyo A. A., Mackie R. I., Stahl D. A., White B. A. 1994b; The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl Environ Microbiol 60:3697–3703
    [Google Scholar]
  36. Raabe R. 1968; An efficient method of excreta collection from caged sheep. Lab Pract 17:217–218
    [Google Scholar]
  37. Rijpens N. P., Jannes G., Van Asbroeck M., Rossau R., Herman L. M. F. 1996; Direct detection of Brucella spp. in raw milk by PCR and reverse hybridization with 16S-23S rRNA spacer probes. Appl Environ Microbiol 62:1683–1688
    [Google Scholar]
  38. Russell J. B. 1985; Fermentation of cellodextrins by cellulolytic and non-cellulolytic rumen bacteria. Appl Environ Microbiol 49:572–576
    [Google Scholar]
  39. Sawada H., Takeuchi T., Matsuda I. 1997; Comparative analysis of Pseudomomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamolytransferase gene ( argK ) and 16S-23S rRNA intergenic spacer sequences. Appl Environ Microbiol 63:282–288
    [Google Scholar]
  40. Sharp R., Hazlewood G. P., Gilbert H. J., O’Donnell A. G. 1994; Unmodified and recombinant strains of Lactobacillus plantarum are rapidly lost from the rumen by protozoal predation. J Appl Bacteriol 76:110–117 [CrossRef]
    [Google Scholar]
  41. Shi Y., Weimer P. J. 1996; Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Appl Environ Microbiol 62:1084–1088
    [Google Scholar]
  42. Shi Y., Weimer P. J. 1997; Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol 63:743–748
    [Google Scholar]
  43. Shi Y., Odt C. L., Weimer P. J. 1997; Competition for cellulose among three predominant ruminal cellulolytic bacteria. Appl Environ Microbiol 63:734–742
    [Google Scholar]
  44. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. 1988; Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084
    [Google Scholar]
  45. Ulyatt M. J., MacRae J. C. 1974; Quantitative digestion of fresh herbage by sheep. 1. The sites of digestion of organic matter, energy, readily fermentable carbohydrate, structural carbohydrate, and lipid. J Agric Sci 82:295–307 [CrossRef]
    [Google Scholar]
  46. Van Gylswyk N. O. 1970; The effect of supplementing a low-protein hay on the cellulolytic bacteria in the rumen of sheep and on the digestibility of cellulose and hemicellulose. J Agric Sci 74:169–180 [CrossRef]
    [Google Scholar]
  47. Varel V. H., Yen J. T., Kreikemeier K. K. 1995; Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract. Appl Environ Microbiol 61:1116–1119
    [Google Scholar]
  48. Vinuesa P., Rademaker J. L. W., De Bruijn F. J., Werner D. 1998; Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol 64:2096–2104
    [Google Scholar]
  49. Von Wintzingerode F., Landt O., Ehrlich A, Göbel U. B. 2000; Peptide nucleic acid-mediated PCR clamping as a useful supplement in the determination of microbial diversity. Appl Environ Microbiol 66:549–557 [CrossRef]
    [Google Scholar]
  50. Weimer P. J. 1996; Why don’t ruminal bacteria digest cellulose faster?. J Dairy Sci 79:1496–1502 [CrossRef]
    [Google Scholar]
  51. Wolin M. J., Miller T. L. 1988; Microbe-microbe interactions. In The Rumen Microbial Ecosystem pp 343–359 Edited by Hobson P. N. New York: Elsevier;
    [Google Scholar]
  52. Zheng D., Alm E. W., Stahl D. A., Raskin L. 1996; Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol 62:4504–4513
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1719
Loading
/content/journal/micro/10.1099/00221287-147-7-1719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error