1887

Abstract

A small (19·8 kDa) protein was identified in ALKO 2718 cultures during growth in the presence of yeast extract and chitin, but not with glucose. The protein targets β-chitin best, then α-chitin, but barely any other polysaccharide. This described chitin-binding protein (ChbB) is the first of its type from a strain and cross-reacts with antibodies raised against the α-chitin-binding protein CHB1. Using reverse genetics, the chromosomal gene of strain ALKO 2718 was identified, cloned and sequenced. ChbB shares several motifs with the α-chitin-binding proteins CHB1 and CHB2 of and CBP21 of predominantly targeting β-chitin. Synthesis was repressed by glucose and the presence of boxes suggests catabolite control. Using PCR, Southern hybridization and anti-ChbB antibodies, the presence of a gene, as well as of a ChbB protein homologue, was ascertained in several tested strains, but not in 168. Contrary to 168, all strains secreted varying amounts of enzymic activity, degrading carboxymethyl chitin coupled with Remazol brilliant violet.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1793
2001-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471793a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1793&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  2. Birsan C., Johnson P., Joshi M. 11 other authors 1998; Mechanisms of cellulases and xylanases. Biochem Soc Trans 26:156–160
    [Google Scholar]
  3. Blaak H., Schrempf H. 1995; Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur J Biochem 229:132–139 [CrossRef]
    [Google Scholar]
  4. Blaak H., Schnellmann J., Walter S., Henrissat B., Schrempf H. 1993; Characteristics of an exochitinase from Streptomyces olivaceoviridis , its corresponding gene, putative protein domains and relationship to other chitinases. Eur J Biochem 214:659–669 [CrossRef]
    [Google Scholar]
  5. Blanco A., Diaz P., Martinez J., Vidal T., Torres A. L., Pastor F. I. 1998; Cloning of a new endoglucanase gene from Bacillus sp. BP-23 and characterisation of the enzyme. Performance in paper manufacture from cereal straw. Appl Microbiol Biotechnol 50:48–54 [CrossRef]
    [Google Scholar]
  6. Blanco A., Diaz P., Zueco J., Parascandola P., Javier Pastor F. I. 1999; A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology 145:2163–2170 [CrossRef]
    [Google Scholar]
  7. Bormann C., Baier D., Raps C., Berger J., Jung G., Schwarz H, Hörr I. 1999; Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tü901 that interferes with growth polarity. J Bacteriol 181:7421–7429
    [Google Scholar]
  8. Borriss R., Buettner K., Maentsaelae P. 1990; Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans : homologies to other beta-glucanases. Mol Gen Genet 222:278–283 [CrossRef]
    [Google Scholar]
  9. Breves R., Bronnenmeier K., Wild N., Lottspeich F., Staudenbauer W. L., Hofemeister J. 1997; Genes encoding two different beta-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol 63:3902–3910
    [Google Scholar]
  10. Cutting S. M., Vander Horn P. B. 1990; Genetic analysis. In Molecular Biological Methods for Bacillus pp 27–74 Edited by Harwood C. R., Cutting S. M. New York, Chichester, Brisbane, Toronto: Wiley;
    [Google Scholar]
  11. Dubnau D., Davidoff-Abelson R. 1971; Fate of transforming DNA following uptake by competent Bacillus subtilis . I. Formation and properties of the donor–recipient complex. J Mol Biol 56:209–221 [CrossRef]
    [Google Scholar]
  12. Frädberg E., Schnürer J. 1998; Antifungal activity of chitinolytic bacteria isolated from airtight stored cereal grain. Can J Microbiol 44:121–127 [CrossRef]
    [Google Scholar]
  13. Gooday W. G. 1990; The ecology of chitin degradation. In Advances in Microbial Ecology pp 387–430 Edited by Marshall K. C. New York: Plenum;
    [Google Scholar]
  14. Gösseringer R., Kuster E., Galinier A., Deutscher J., Hillen W. 1997; Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J Mol Biol 266:665–676 [CrossRef]
    [Google Scholar]
  15. Hoang V., Hofemeister J. 1995; Bacillus amyloliquefaciens possesses a second type I signal peptidase with extensive sequence similarity to other Bacillus SPases. Biochim Biophys Acta 1269:64–68 [CrossRef]
    [Google Scholar]
  16. Hoj P. B., Condron R., Traeger J. C., McAuliffe J. C., Stone B. A. 1992; Identification of glutamic acid 105 at the active site of Bacillus amyloliquefaciens 1,3-1,4-beta-d-glucan 4-glucanohydrolase using epoxide-based inhibitors. J Biol Chem 267:25059–25066
    [Google Scholar]
  17. Hueck C. J., Hillen W., Saier M. H. Jr 1994; Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 145:503–518 [CrossRef]
    [Google Scholar]
  18. Ito S. 1997; Alkaline cellulases from alkaliphilic Bacillus : enzymatic properties, genetics, and application to detergents. Extremophiles 1:61–66 [CrossRef]
    [Google Scholar]
  19. Izume M., Nagae S., Kawagishi H., Mitsutomi M., Ohtakara A. 1992; Action pattern of Bacillus sp. no. 7-M chitosanase on partially N-acetylated chitosan. Biosci Biotechnol Biochem 56:448–453 [CrossRef]
    [Google Scholar]
  20. Jeuniaux C. 1966; Chitinases. Methods Enzymol 8:644–650
    [Google Scholar]
  21. Kolbe S., Fischer S., Becirevic A., Hinz P., Schrempf H. 1998; The Streptomyces reticuli α-chitin-binding protein CHB2 and its gene. Microbiology 144:1291–1297 [CrossRef]
    [Google Scholar]
  22. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  23. Kurakake M., Yo-u S., Nakagawa K., Sugihara M., Komaki T. 2000; Properties of chitosanase from Bacillus cereus S1. Curr Microbiol 40:6–9 [CrossRef]
    [Google Scholar]
  24. Kutzner H. J. 1981; The family Streptomycetaceae . . In The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria pp 2028–2090 Edited by Starr M. P., Schlegel H., Stolp H., Trüper H. G., Balows A. Berlin: Springer;
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  26. Mitsutomi M., Isono M., Uchiyama A., Nikaidou N., Ikegami T., Watanabe T. 1998; Chitosanase activity of the enzyme previously reported as beta-1,3-1,4-glucanase from Bacillus circulans WL-12. Biosci Biotechnol Biochem 62:2107–2114 [CrossRef]
    [Google Scholar]
  27. Montgomery M. T., Kirchman D. L. 1994; Induction of chitin-binding proteins during the specific attachment of the marine bacterium Vibrio harveyi to chitin. Appl Environ Microbiol 60:4284–4288
    [Google Scholar]
  28. Pleban S., Chernin L., Chet I. 1997; Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288 [CrossRef]
    [Google Scholar]
  29. Priest F. G. 1985; Synthesis and secretion of extracellular enzymes by bacilli. Microbiol Sci 2:278–282
    [Google Scholar]
  30. Robbins P. W., Albright C., Benfield B. 1988; Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J Biol Chem 263:443–447
    [Google Scholar]
  31. Sabini E., Sulzenbacher G., Dauter M., Dauter Z., Jorgensen P. L., Schulein M., Dupont C., Davies G. J., Wilson K. S. 1999; Catalysis and specificity in enzymatic glycoside hydrolysis: a 2,5B conformation for the glycosyl-enzyme intermediate revealed by the structure of the Bacillus agaradhaerens family 11 xylanase. Chem Biol 6:483–492 [CrossRef]
    [Google Scholar]
  32. Sabry A. 1992; Microbial degradation of shrimp-shell waste. J Basic Microbiol 32:107–111 [CrossRef]
    [Google Scholar]
  33. Saito A., Fujii T., Yoneyama T., Redenbach M., Ohno T., Watanabe T., Miyashita K. 1999; High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 63:710–718 [CrossRef]
    [Google Scholar]
  34. Saito J., Kita A., Higuchi Y., Nagata Y., Ando A., Miki K. 1999; Crystal structure of chitosanase from Bacillus circulans MH-K1 at 1·6-Å resolution and its substrate recognition mechanism. J Biol Chem 274:30818–30825 [CrossRef]
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sampson M. N., Gooday G. W. 1998; Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 144:2189–2194 [CrossRef]
    [Google Scholar]
  37. Sanchez-Torres J., Perez P., Santamarı́a R. I. 1996; A cellulase gene from a new alkalophilic Bacillus sp.(strain N186-1). Its cloning, nucleotide sequence and expression in Escherichia coli. Appl Microbiol Biotechnol 46:149–155 [CrossRef]
    [Google Scholar]
  38. Schimming S., Schwarz W. H., Staudenbauer W. L. 1992; Structure of the Clostridium thermocellum gene licB and the encoded beta-1,3-1,4-glucanase. A catalytic region homologous to Bacillus lichenases joined to the reiterated domain of clostridial cellulases. Eur J Biochem 204:13–19 [CrossRef]
    [Google Scholar]
  39. Schnellmann J., Zeltins A., Blaak H., Schrempf H. 1994; The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline α-chitin of fungi and other organisms. Mol Microbiol 13:807–819 [CrossRef]
    [Google Scholar]
  40. Schrempf H. 1999; Chitin-binding proteins in streptomycetes. In Chitin and Chitinases pp 99–108 Edited by Jollès P., Muzzarelli R. A. A. Basel, Schweiz: Birkhäuser;
    [Google Scholar]
  41. Shin Y. C., Kang S. O., Ha K. J., Choi Y. J., Kim T. U., Nam H. S. 1996; Characterisation of extracellular chitinases of an isolated bacterium Serratia liquefaciens strain GM 1403. In Advances in Chitin Science pp 84–89 Edited by Domard A., Jeuniaux C., Muzzarelli R. A. A., Roberts G. Lyon: Jacques André Publisher;
    [Google Scholar]
  42. Stülke J., Hillen W. 2000; Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880 [CrossRef]
    [Google Scholar]
  43. Suetake T., Tsuda S., Kawabata S., Miura K., Iwanaga S., Hikichi K., Nitta K., Kawano K. 2000; Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J Biol Chem 275:17929–17932 [CrossRef]
    [Google Scholar]
  44. Suzuki K., Suzuki M., Taiyoji M., Nikaidou N., Watanabe T. 1998; Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem 62:128–135 [CrossRef]
    [Google Scholar]
  45. Svergun D. I., Becirevic A., Schrempf H., Koch M. H. J, Grüber G. 2000; Solution structure and conformational changes of the Streptomyces chitin-binding protein (CHB1. Biochemistry 39:10677–10683 [CrossRef]
    [Google Scholar]
  46. Tabernero C., Coll P. M., Fernandez-Abalos J. M., Perez P., Santamarı́a R. I. 1994; Cloning and DNA sequencing of bgaA , a gene encoding an endo-beta-1,3-1,4-glucanase, from an alkalophilic Bacillus strain (N137. Appl Environ Microbiol 60:1213–1220
    [Google Scholar]
  47. Trachuk L. A., Shemiakina T. M., Chestukhina G. G., Stepanov V. M. 1996; Bacillus cereus chitinases: isolation and characteristics. Biokhimiya 61:357–368 (in Russian
    [Google Scholar]
  48. Vaupel M., Thauer R. K. 1995; Coenzyme F420-dependent N5,N10-methylenetetrahydromethanopterin reductase (Mer) from Methanobacterium thermoautotrophicum strain Marburg. Cloning, sequencing, transcriptional analysis, and functional expression in Escherichia coli of the mer gene. Eur J Biochem 231:773–778
    [Google Scholar]
  49. Vehmaanperä J. 1989; Transformation of Bacillus amyloliquefaciens by electroporation. FEMS Microbiol Lett 61:165–170 [CrossRef]
    [Google Scholar]
  50. Vehmaanperä J. Steinborn G., Hofemeister J. 1991; Genetic manipulation of Bacillus amyloliquefaciens. J Biotechnol 19:221–240 [CrossRef]
    [Google Scholar]
  51. Vihinen M., Mäntsälä P. 1989; Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24:329–418 [CrossRef]
    [Google Scholar]
  52. Watanabe T., Oyanagi W., Suzuki K., Ohnishi K., Tanaka H. 1992; Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinases and class III plant chitinases. J Bacteriol 174:408–414
    [Google Scholar]
  53. Wiwat C., Siwayaprahm P., Bhumiratana A. 1999; Purification and characterization of chitinase from Bacillus circulans No. 4.1. Curr Microbiol 39:134–140 [CrossRef]
    [Google Scholar]
  54. Zeltins A., Schrempf H. 1995; Visualization of α-chitin with a specific chitin-binding protein (CHB1) from Streptomyces olivaceoviridis. Anal Biochem. 231287–294 [CrossRef]
  55. Zeltins A., Schrempf H. 1997; Specific interaction of the Streptomyces chitin-binding protein CHB1 with α-chitin: the role of individual tryptophan residues. Eur J Biochem 246:557–564 [CrossRef]
    [Google Scholar]
  56. Zeng H., Wang Y., Zhang Y. 1998; Molecular cloning of a chitinase gene from Bacillus circulans C-2. Chin J Biotechnol 14:25–29
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1793
Loading
/content/journal/micro/10.1099/00221287-147-7-1793
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error