1887

Abstract

In fungi, the cell wall plays a major role in host–pathogen interactions. Despite this, little is known about the molecular basis of cell wall assembly in , which has emerged as the second most common cause of systemic candidosis. A gene family, , that shares significant homologies with both the gene of , which is necessary for cell wall assembly, and the pH-regulated genes and of , which are involved in cell wall assembly and required for virulence, has been cloned. Among the members of this family, display a unique expression pattern. Both and are constitutively expressed. In contrast, transcript was not detectable under any of the assayed conditions. The actin gene, , has also been cloned to be used as a meaningful loading control in Northern blots. and were deleted by two different methodological approaches. A rapid PCR-based strategy by which gene disruption was achieved with short regions of homology (50 bp) was applied successfully to . Δ or Δ cells demonstrated similar aberrant morphologies, displaying an altered bud morphology and forming floccose aggregates. These phenotypes suggest a role for and in cell wall biosynthesis. Further evidence for this hypothesis was obtained by successful functional complementation of a null mutation in with the or gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2007
2001-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472007a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2007&mimeType=html&fmt=ahah

References

  1. Belli G., Gari E., Aldea M., Herrero E. 1998; Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14:1127–1138 [CrossRef]
    [Google Scholar]
  2. Chaffin W. L., Lopez-Ribot J. L., Casanova M., Gozalbo D., Martinez J. P. 1998; Cell wall and secreted proteins of Candida albicans : identification, function, and expression. Microbiol Mol Biol Rev 62:130–180
    [Google Scholar]
  3. Cormack B. P., Ghori N., Falkow S. 1999; An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582 [CrossRef]
    [Google Scholar]
  4. Davis D., Wilson R. B., Mitchell A. P. 2000; RIM101-dependent and -independent pathways govern pH responses in Candida albicans . Mol Cell Biol 20:971–978 [CrossRef]
    [Google Scholar]
  5. De Bernardis F., Mühlschlegel F. A., Cassone A., Fonzi W. A. 1998; The pH of the host niche controls gene expression in and virulence of Candida albicans . Infect Immun 66:3317–3325
    [Google Scholar]
  6. Douglas C. M., D’Ippolito J. A., Shei G. J. 9 other authors 1997; Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-d-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479
    [Google Scholar]
  7. Edmont M. B., Wallace S. E., McClish D. K., Pfaller M. A., Jones R. N., Wenzel R. P. 1999; Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29:239–244 [CrossRef]
    [Google Scholar]
  8. El Barkani A., Haynes K., Mösch H. U., Frosch M., Mühlschlegel F. 2000a; Candida glabrata shuttle vectors suitable for translational fusions to lacZ and use of beta-galactosidase as a reporter of gene expression. Gene 246:151–155 [CrossRef]
    [Google Scholar]
  9. El Barkani A., Kurzai O., Fonzi W. A., Ramon A. M., Porta A., Frosch M., Mühlschlegel F. 2000b; Dominant active alleles of RIM101 ( PRR2 ) bypass the pH restriction on filamentation of Candida albicans . Mol Cell Biol 13:4635–4647
    [Google Scholar]
  10. Fidel P. L., Vazquez J. A., Sobel J. D. 1999; Candida glabrata : review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans . Clin Microbiol Rev 12:80–96
    [Google Scholar]
  11. Fonzi W. A. 1999; PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol 181:7070–7079
    [Google Scholar]
  12. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  13. Gerber L. D., Kodukula K., Udenfriend S. 1992; Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem 267:12168–12173
    [Google Scholar]
  14. Ghannoum M. A., Spellberg B., Saporito-Irwin S. M., Fonzi W. A. 1995; Reduced virulence of Candida albicans PHR1 mutants. Infect Immun 63:4528–4530
    [Google Scholar]
  15. Gietz D., St Jean A., Woods R. A., Schiestl R. H. 1992; Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425 [CrossRef]
    [Google Scholar]
  16. Heinz W. J., Kurzai O., Brakhage A., Fonzi W. A., Korting H. C., Frosch M., Mühlschlegel F. 2000; Molecular responses to changes of the environmental pH are conserved between Candida dubliniensis and Candida albicans . Int J Med Microbiol 290:231–238 [CrossRef]
    [Google Scholar]
  17. Hirokawa T., Boon C. S., Mitaku S. 1998; SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379 [CrossRef]
    [Google Scholar]
  18. Huang M. E., Cadieu E., Souciet J. L., Galibert F. 1997; Disruption of six novel yeast genes reveals three genes essential for vegetative growth and one required for growth at low temperature. Yeast 13:1181–1194 [CrossRef]
    [Google Scholar]
  19. Jentoft N. 1990; Why are proteins O-glycosylated?. Trends Biochem Sci 15:291–294 [CrossRef]
    [Google Scholar]
  20. Kamran M., Rogers T., Mühlschlegel F. A., Haynes K. 2000; Construction of a library of signature tagged insertional mutants in the pathogenic yeast Candida glabrata. In Abstracts of the Yeast Genetics and Molecular Biology Meeting Seattle, USA: July 25–30 abstract 555 Genetics Society of America;
    [Google Scholar]
  21. Kapteyn J. C., Ram A. F., Groos E. M., Kollar R., Montijn R. C., Llobell A., Cabib E., Klis F. M., van den Ende H. 1997; Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. J Bacteriol 179:6279–6284
    [Google Scholar]
  22. Kitada K., Yamaguchi E., Arisawa M. 1995; Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation. Gene 165:203–206 [CrossRef]
    [Google Scholar]
  23. Kitada K., Yamaguchi E., Arisawa M. 1996; Isolation of a Candida glabrata centromere and its use in construction of plasmid vectors. Gene 175:105–108 [CrossRef]
    [Google Scholar]
  24. Kitada K., Yamaguchi E., Hamada K., Arisawa M. 1997; Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere. Curr Genet 31:122–127 [CrossRef]
    [Google Scholar]
  25. Kurtz M. B., Douglas C. M. 1997; Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 35:79–86 [CrossRef]
    [Google Scholar]
  26. Kurzai O., Heinz W. J., Sullivan D. J., Coleman D. C., Frosch M., Mühlschlegel F. A. 1999; Rapid PCR test for discriminating between Candida albicans and Candida dubliniensis isolates using primers derived from the pH-regulated PHR1 and PHR2 genes of C. albicans. J Clin Microbiol 37:1587–1590
    [Google Scholar]
  27. Kurzai O., Korting H. C., Harmsen D., Bautsch W., Molitor M., Frosch M., Mühlschlegel F. A. 2000; Molecular and phenotypic identification of the yeast pathogen Candida dubliniensis . J Mol Med 78:521–529 [CrossRef]
    [Google Scholar]
  28. Losberger C., Ernst J. F. 1989; Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res 17:9488 [CrossRef]
    [Google Scholar]
  29. Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latge J. P. 2000; Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889 [CrossRef]
    [Google Scholar]
  30. Mühlschlegel F. A., Fonzi W. A. 1997; PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967
    [Google Scholar]
  31. Mühlschlegel F., Fonzi W., Hoyer L. 12 other authors 1998; Molecular mechanisms of virulence in fungus-host interactions for Aspergillus fumigatus and Candida albicans. Med Mycol 36 :suppl. 1238–248 [CrossRef]
    [Google Scholar]
  32. Nagahashi S., Lussier M., Bussey H. 1998; Isolation of Candida glabrata homologs of the Saccharomyces cerevisiae KRE9 and KNH1 genes and their involvement in cell wall beta-1,6-glucan synthesis. J Bacteriol 180:5020–5029
    [Google Scholar]
  33. Nakayama H., Izuta M., Nagahashi S., Sihta E. Y., Sato Y., Yamazaki T., Arisawa M., Kitada K. 1998; A controllable gene-expression system for the pathogenic fungus Candida glabrata . Microbiology 144:2407–2415 [CrossRef]
    [Google Scholar]
  34. Nakazawa T., Horiuchi H., Ohta A., Takagi M. 1998; Isolation and characterization of EPD1 , an essential gene for pseudohyphal growth of a dimorphic yeast, Candida maltosa. J Bacteriol 180:2079–2086
    [Google Scholar]
  35. Nakazawa T., Takahashi M., Horiuchi H., Ohta A., Takagi M. 2000; Cloning and characterization of EPD2 , a gene required for efficient pseudohyphal formation of a dimorphic yeast, Candida maltosa . Biosci Biotechnol Biochem 64:369–377 [CrossRef]
    [Google Scholar]
  36. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  37. Nuoffer C., Jeno P., Conzelmann A., Riezman H. 1991; Determinants for glycophospholipid anchoring of the Saccharomyces cerevisiae GAS1 protein to the plasma membrane. Mol Cell Biol 11:27–37
    [Google Scholar]
  38. Pfaller M. A., Jones R. N., Doern G. V., Sader H. S., Hollis R. J., Messer S. A. 1998; International surveillance of bloodstream infections due to Candida species: frequency of occurrence and antifungal susceptibilities of isolates collected in 1997 in the United States, Canada, and South America for the SENTRY program. J Clin Microbiol 36:1886–1889
    [Google Scholar]
  39. Popolo L., Vai M., Gatti E., Porello S., Bonfante P., Balestrini R., Alberghina L. 1993; Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae GPI-anchored protein gp115 in morphogenesis and cell separation. J Bacteriol 175:1879–1885
    [Google Scholar]
  40. Popolo L., Gilardelli D., Bonfante P., Vai M. 1997; Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1delta mutant of Saccharomyces cerevisiae . J Bacteriol 179:463–469
    [Google Scholar]
  41. Ram A. F., Kapteyn J. C., Montijn R. C., Caro L. H., Douwes J. E., Baginsky W., Mazur P., Klis F. M., van den Ende H. 1998; Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180:1418–1424
    [Google Scholar]
  42. Ramon A. M., Porta A., Fonzi W. A. 1999; Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2 . J Bacteriol 181:7524–7530
    [Google Scholar]
  43. Saporito-Irwin S. M., Birse C. E., Sypherd P. S., Fonzi W. A. 1995; PHR1 , a pH-regulated gene of Candida albicans , is required for morphogenesis. Mol Cell Biol 15:601–613
    [Google Scholar]
  44. Schorling S. R., Korting H. C., Frosch M., Mühlschlegel F. 2000; The role of Candida dubliniensis in oral candidiasis in human immunodeficiency virus-infected individuals. Crit Rev Microbiol 26:59–68 [CrossRef]
    [Google Scholar]
  45. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  46. Vai M., Popolo L., Grandori R., Lacana E., Alberghina L. 1990; The cell cycle modulated glycoprotein GP115 is one of the major yeast proteins containing glycosylphosphatidylinositol. Biochim Biophys Acta 1038:277–285 [CrossRef]
    [Google Scholar]
  47. Vai M., Orlandi I., Cavadini P., Alberghina L., Popolo L. 1996; Candida albicans homologue of GGP1/GAS1 gene is functional in Saccharomyces cerevisiae and contains the determinants for glycosylphosphatidylinositol attachment. Yeast 12:361–368 [CrossRef]
    [Google Scholar]
  48. Vanden Bossche H., Dromer F., Improvisi I., Lozano C. M., Rex J. H., Sanglard D. 1998; Antifungal drug resistance in pathogenic fungi. Med Mycol 36:119–128
    [Google Scholar]
  49. Vazquez J. A., Dembry L. M., Sanchez V., Vazquez M. A., Sobel J. D., Dmuchowski C., Zervos M. J. 1998; Nosocomial Candida glabrata colonization: an epidemiologic study. J Clin Microbiol 36:421–426
    [Google Scholar]
  50. Weig M., Gross U., Mühlschlegel F. 1998; Clinical aspects and pathogenesis of Candida infection. Trends Microbiol 6:468–470 [CrossRef]
    [Google Scholar]
  51. Wilson R. B., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874
    [Google Scholar]
  52. Zhou P., Szczypka M. S., Young R., Thiele D. J. 1994; A system for gene cloning and manipulation in the yeast Candida glabrata . Gene 142:135–140 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2007
Loading
/content/journal/micro/10.1099/00221287-147-8-2007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error