1887

Abstract

The fermentative lactate dehydrogenase (LDH) of is induced by low pH under anaerobic conditions. Both translational and transcriptional gene fusions to , which encodes the fermentative LDH, have now been made. Both types of fusion were induced by low pH, but only in the absence of air. However, the translational fusions were consistently expressed at a five- to tenfold higher level than the transcriptional fusions, perhaps implying some post-transcriptional effect on expression. Introduction of ::Kan decreased expression of both translational and transcriptional fusions by three- to fivefold. Disruption of , which encodes a repressor of several genes of the phosphotransferase system, almost abolished expression of . Disruption of caused a moderate drop in expression of both operon and protein fusions, whereas insertional inactivation of or had the opposite effect. These effects are probably indirect, resulting from alterations in sugar accumulation versus storage. Mutations in , , , , , , , /, , and had no effect on expression of the fusions. was not induced by the membrane-permeant weak acid benzoate, implying that it does not respond to the internal pH directly. Little pH induction was seen during growth on glycerol plus fumarate, suggesting that products of sugar fermentation are necessary for acid induction. Addition of succinate, acetate or lactate had no effect on expression. In contrast, pyruvate caused a two- to fourfold increase in expression of . This accords with the idea that increased sugar metabolism indirectly induces .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2437
2001-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472437a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2437&mimeType=html&fmt=ahah

References

  1. Aristarkhov A., Mikulskis A., Belasco J. G., Lin E. C. C. 1996; Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli . J Bacteriol 178:4327–4332
    [Google Scholar]
  2. Becker S., Vlad D., Schuster S., Pfeiffer P., Unden G. 1997; Regulatory O2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration. Arch Microbiol 168:290–296 [CrossRef]
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  4. Böck A., Sawers G. 1996; Fermentation. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp 262–282 Edited by Neidhardt F. C. R. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue, a high-efficiency, plasmid-transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5:376–380
    [Google Scholar]
  6. Bunch P. K., Mat-Jan F., Lee N. A., Clark D. P. 1997; The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143:187–195 [CrossRef]
    [Google Scholar]
  7. Charpentier B., Bardey V., Robas N., Branlant C. 1998; The EIIGlc protein is involved in glucose-mediated activation of Escherichia coli gapA and gapB-pgk transcription. J Bacteriol 180:6476–6483
    [Google Scholar]
  8. Chuang S. E., Blattner F. R. 1993; Characterization of twenty-six new heat shock genes of Escherichia coli . J Bacteriol 175:5242–5252
    [Google Scholar]
  9. Clark D. P. 1989; Fermentation pathways of Escherichia coli . FEMS Microbiol Rev 63:223–234
    [Google Scholar]
  10. Clark D. P., Rod M. L. 1987; Regulatory mutations that allow the growth of Escherichia coli on butanol as a carbon source. J Mol Evol 25:151–158 [CrossRef]
    [Google Scholar]
  11. Dailly Y. P. 1998 Molecular cloning and analysis of AdhR, a protein regulating alcohol fermentation in Escherichia coli Doctoral Dissertation, Southern Illinois University; Carbondale, IL:
    [Google Scholar]
  12. Decker K., Plumbridge J., Boos W. 1998; Negative transcriptional regulation of a positive regulator: the expression of malT , encoding the transcriptional activator of the maltose regulon of Escherichia coli , is negatively controlled by Mlc. Mol Microbiol 27:381–390 [CrossRef]
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–584 [CrossRef]
    [Google Scholar]
  14. Haugaard N. 1959; d- and l-lactic acid oxidases of Escherichia coli . Biochim Biophys Acta 31:66–77 [CrossRef]
    [Google Scholar]
  15. Iuchi S., Chepuri V., Fu H. A., Gennis R. B., Lin E. C. C. 1990; Requirement for terminal cytochromes in generation of the aerobic signal for the arc regulatory system in Escherichia coli , study utilizing deletions and lac fusions of cyo and cyd . J Bacteriol 172:6020–6025
    [Google Scholar]
  16. Kim S. Y., Nam T. W., Shin D., Koo B. M., Seok Y. J., Ryu S. 1999; Purification of Mlc and analysis of its effects on the pts expression in Escherichia coli . J Biol Chem 274:25398–25402 [CrossRef]
    [Google Scholar]
  17. Kimata K., Inada T., Tagami H., Aiba H. 1998; A global repressor (Mlc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli . Mol Microbiol 29:1509–1519 [CrossRef]
    [Google Scholar]
  18. Kline E. S., Mahler E. R. 1965; The lactic acid dehydrogenases of Escherichia coli . Ann N Y Acad Sci 119:905–917
    [Google Scholar]
  19. Lee S. J., Boos W., Bouche J. P., Plumbridge J. 2000; Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli . EMBO J 19:5353–5361 [CrossRef]
    [Google Scholar]
  20. Leonardo M. R., Cunningham P. R., Clark D. P. 1993; Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli . J Bacteriol 175:870–878
    [Google Scholar]
  21. Leonardo M. R., Dailly Y. P., Clark D. P. 1996; Role of NAD in regulating the adhE gene of Escherichia coli . J Bacteriol 178:6013–6018
    [Google Scholar]
  22. Liu M. Y., Yang H., Romeo T. 1995; The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 177:2663–2672
    [Google Scholar]
  23. Liu M. Y., Gui G., Wei B., Oakford L., Yuksel U., Giedroc D. P., Romeo T., Preston J. F.3rd. 1997; The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli . J Biol Chem 272:17502–17510 [CrossRef]
    [Google Scholar]
  24. Mason T. G., Richardson G. 1981; Escherichia coli and the human gut, some ecological considerations. J Appl Bacteriol 51:1–16 [CrossRef]
    [Google Scholar]
  25. Mat-Jan F., Alam K. Y., Clark D. P. 1989; Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol 171:342–348
    [Google Scholar]
  26. Mayr U., Hansel R., Deparade M., Pauly H. E., Pfleiderer G., Tromer W. E. 1982; Structure–function relationship in the allosteric l-lactate dehydrogenases from Lactobacillus casei and Lactobacillus curvatus . Eur J Biochem 126:549–558 [CrossRef]
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Ogino T., Arata Y., Fujiwara S. 1980; Proton correlation nuclear magnetic resonance study of metabolic regulation and pyruvate transport in anaerobic Escherichia coli cells. Biochemistry 19:3684–3691 [CrossRef]
    [Google Scholar]
  29. Peekhaus N., Conway T. 1998; What’s for dinner? Entner–Doudoroff metabolism in Escherichia coli . J Bacteriol 180:3495–3502
    [Google Scholar]
  30. Plumbridge J. 1998a; Control of the expression of the manXYZ operon in Escherichia coli , Mlc is a negative regulator of the mannose PTS. Mol Microbiol 27:369–380 [CrossRef]
    [Google Scholar]
  31. Plumbridge J. 1998b; Expression of ptsG , the gene for the major glucose PTS transporter in E. coli , is repressed by Mlc and induced by growth on glucose. Mol Microbiol 29:1053–1063 [CrossRef]
    [Google Scholar]
  32. Plumbridge J. 1999; Expression of the phosphotransferase system both mediates and is mediated by Mlc regulation in Escherichia coli . Mol Microbiol 33:260–273 [CrossRef]
    [Google Scholar]
  33. Plumbridge J. 2001; DNA binding sites for the Mlc and NagC proteins: regulation of nagE , encoding the N -acetylglucosamine-specific transporter in Escherichia coli . Nucleic Acids Res 29:506–514 [CrossRef]
    [Google Scholar]
  34. Romeo T. 1998; Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330 [CrossRef]
    [Google Scholar]
  35. Romeo T., Gong M., Liu M. Y., Brun-Zinkernagel A. M. 1993; Identification and molecular characterization of csrA , a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755
    [Google Scholar]
  36. Rosner J. L., Slonczewski J. L. 1994; Dual regulation of inaA by the multiple antibiotic resistance (Mar) and superoxide (SoxRS) stress response systems of Escherichia coli . J Bacteriol 176:6262–6269
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  39. Sato H., Miura K. K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  40. Simons R. W., Howner F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53:85–96 [CrossRef]
    [Google Scholar]
  41. Taguchi H., Ohta T. 1991; d-Lactate dehydrogenase is a member of the d-isomer specific 2-hydroxyacid dehydrogenase family. J Biol Chem 266:12588–12594
    [Google Scholar]
  42. Tanaka Y., Kimata K., Aiba H. 2000; A novel regulatory role of glucose transporter of Escherichia coli : membrane sequestration of a global repressor Mlc. EMBO J 19:5344–5352 [CrossRef]
    [Google Scholar]
  43. Tarmy E. M., Kaplan N. O. 1968a; Chemical characterization of d-lactate dehydrogenase from Escherichia coli B. J Biol Chem 243:2579–2586
    [Google Scholar]
  44. Tarmy E. M., Kaplan N. O. 1968b; Kinetics of Escherichia coli B d-lactate dehydrogenase and evidence for pyruvate controlled change in conformation. J Biol Chem 243:2587–2596
    [Google Scholar]
  45. Tseng C. P., Albrecht J., Gunsalus R. P. 1996; Effect of microaerophilic cell growth conditions on expression of the aerobic ( cyoABCDE and cydAB ) and anaerobic ( narGHJI, frdABCD , and dmsABC ) respiratory pathway genes in Escherichia coli . J Bacteriol 178:1094–1098
    [Google Scholar]
  46. Vogel H. J., Bonner D. M. 1956; Acetylornithinase in Escherichia coli . J Biol Chem 218:97–103
    [Google Scholar]
  47. White S., Tuttle F. E., Blankenhorn D., Dosch D. C., Slonczewski J. L. 1992; pH dependence and gene structure of inaA in Escherichia coli . J Bacteriol 174:1537–1543
    [Google Scholar]
  48. Winkelman J. W., Clark D. P. 1986; Anaerobically induced genes of Escherichia coli . J Bacteriol 167:362–367
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2437
Loading
/content/journal/micro/10.1099/00221287-147-9-2437
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error