1887

Abstract

The authors have developed a simple and highly efficient system for generating allelic exchanges in both fast- and slow-growing mycobacteria. In this procedure a gene of interest, disrupted by a selectable marker, is cloned into a conditionally replicating (temperature-sensitive) shuttle phasmid to generate a specialized transducing mycobacteriophage. The temperature-sensitive mutations in the mycobacteriophage genome permit replication at the permissive temperature of 30 °C but prevent replication at the non-permissive temperature of 37 °C. Transduction at a non-permissive temperature results in highly efficient delivery of the recombination substrate to virtually all cells in the recipient population. The deletion mutations in the targeted genes are marked with antibiotic-resistance genes that are flanked by γδ- (olvase recognition target) sites. The transductants which have undergone a homologous recombination event can be conveniently selected on antibiotic-containing media. To demonstrate the utility of this genetic system seven different targeted gene disruptions were generated in three substrains of BCG, three strains of , and . Mutants in the , , , , , Rv3291c and Rv0867c genes or operons were isolated as antibiotic-resistant (and in some cases auxotrophic) transductants. Using a plasmid encoding the γδ-resolvase (), the resistance genes could be removed, generating unmarked deletion mutations. It is concluded from the high frequency of allelic exchange events observed in this study that specialized transduction is a very efficient technique for genetic manipulation of mycobacteria and is a method of choice for constructing isogenic strains of , BCG or which differ by defined mutations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3007
2002-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483007a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3007&mimeType=html&fmt=ahah

References

  1. Aldovini A, Husson R. N., Young R. A. 1993; The uraA locus and homologous recombination in Mycobacterium bovis BCG. J Bacteriol 175:7282–7289
    [Google Scholar]
  2. Azad A. K, Sirakova T. D, Rogers L. M., Kolattukudy P. E. 1996; Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc Natl Acad Sci USA 93:4787–4792
    [Google Scholar]
  3. Balasubramanian V, Pavelka M. S. Jr, Bardarov S. S, Martin J, Weisbrod T. R, McAdam R. A, Bloom B. R., Jacobs W. R. Jr 1996; Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J Bacteriol 178:273–279
    [Google Scholar]
  4. Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, McAdam R. A, Bloom B. R, Hatfull G. F., Jacobs W. R. Jr 1997; Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis . Proc Natl Acad Sci USA 94:10961–10966
    [Google Scholar]
  5. Berg C. M, Vartak N. B, Wang G, Xu X, Liu L, MacNeil D. J, Gewain K. M, Wiater L. A., Berg D. E. 1992; The m γδ-1 element, a small γδ (Tn 1000 ) derivative useful for plasmid mutagenesis, allele replacement and DNA sequencing. Gene 113:9–16
    [Google Scholar]
  6. Berthet F. X, Lagranderie M, Gounon P. 9 other authors 1998; Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282:759–762
    [Google Scholar]
  7. Boshoff H. I. M., Mizrahi V. 2000; Expression of Mycobacterium smegmatis pyrazinamidase in Mycobacterium tuberculosis confers hypersensitivity to pyrazinamide and related amides. J Bacteriol 182:5479–5485
    [Google Scholar]
  8. Braunstein M, Brown A. M, Kurtz S., Jacobs W. R. Jr 2001; Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 183:6979–6990
    [Google Scholar]
  9. Cole S. T, Brosch R, Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 An erratum appears in Nature 396, 190.
    [Google Scholar]
  10. Cox J. S, Chen B, McNeil M., Jacobs W. R. Jr 1999; Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83
    [Google Scholar]
  11. Fitzmaurice A. M., Kolattukudy P. E. 1998; An acyl-CoA synthase ( acoas ) gene adjacent to the mycocerosic acid synthase ( mas ) locus is necessary for mycocerosyl lipid synthesis in Mycobacterium tuberculosis var. bovis BCG. J Biol Chem 273:8033–8039
    [Google Scholar]
  12. Fleischmann R. D, Alland D, Eisen J. A. 23 other authors 2002; Whole genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol in press
    [Google Scholar]
  13. Frischkorn K, Sander P, Scholz M, Teschner K, Prammananan T., Bottger E. C. 1998; Investigation of mycobacterial recA function: protein introns in the RecA of pathogenic mycobacteria do not affect competency for homologous recombination. Mol Microbiol 29:1203–1214
    [Google Scholar]
  14. Glickman M. S, Cox J. S., Jacobs W. R. Jr 2000; A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis . Mol Cell 5:717–727
    [Google Scholar]
  15. Hatfull G. F. 1996; The molecular genetics of Mycobacterium tuberculosis . Curr Top Microbiol Immunol 215:29–47
    [Google Scholar]
  16. Hatfull G. F, Salvo J. J, Falvey E. E, Rimphanitchayakit V., Grindley N. D. 1988 Site-Specific Recombination by the γδ Resolvase Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Hatfull G. F, Barsom L, Chang L, Donnelly-Wu M, Lee M. H, Levin M, Nesbit C., Sarkis G. J. 1994; Bacteriophages as tools for vaccine development. Dev Biol Stand 82:43–47
    [Google Scholar]
  18. Hinds J, Mahenthiralingam E, Kempsell K. E, Duncan K, Stokes R. W, Parish T., Stoker N. G. 1999; Enhanced gene replacement in mycobacteria. Microbiology 145:519–527
    [Google Scholar]
  19. Jacobs W. R. Jr, Kalpana G. V, Cirillo J. D, Pascopella L, Snapper S. B, Udani R. A, Jones W, Barletta R. G., Bloom B. R. 1991; Genetic systems for mycobacteria. Methods Enzymol 204:537–555
    [Google Scholar]
  20. Kalpana G. V, Bloom B. R., Jacobs W. R. Jr 1991; Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci USA 88:5433–5437
    [Google Scholar]
  21. Knipfer N, Seth A., Shrader T. E. 1997; Unmarked gene integration into the chromosome of Mycobacterium smegmatis via precise replacement of the pyrF gene. Plasmid 37:129–140
    [Google Scholar]
  22. Lenox E. S. 1955; Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206
    [Google Scholar]
  23. Masters M. others 1996; Generalized transduction. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 2421–2441 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. McFadden J. 1996; Recombination in mycobacteria. Mol Microbiol 21:205–211
    [Google Scholar]
  25. Parish T., Stoker N. G. 2000; Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975
    [Google Scholar]
  26. Parish T, Gordhan B. G, McAdam R. A, Duncan K, Mizrahi V., Stoker N. G. 1999; Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology 145:3497–3503
    [Google Scholar]
  27. Pavelka M. S. Jr, Jacobs W. R. Jr 1996; Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis . J Bacteriol 178:6496–6507
    [Google Scholar]
  28. Pavelka M. S. Jr, Jacobs W. R. Jr 1999; Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis , Mycobacterium bovis bacillus Calmette-Guérin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol 181:4780–4789
    [Google Scholar]
  29. Pelicic V, Reyrat J. M., Gicquel B. 1996a; Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20:919–925
    [Google Scholar]
  30. Pelicic V, Reyrat J. M., Gicquel B. 1996b; Positive selection of allelic exchange mutants in Mycobacterium bovis BCG. FEMS Microbiol Lett 144:161–166
    [Google Scholar]
  31. Pelicic V, Jackson M, Reyrat J. M, Jacobs W. R. Jr, Gicquel B., Guilhot C. 1997; Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis . Proc Natl Acad Sci USA 94:10955–10960
    [Google Scholar]
  32. Raman S, Song T, Puyang X, Bardarov S, Jacobs W. R. Jr, Husson R. N. 2001; The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis . J Bacteriol 183:6119–6125
    [Google Scholar]
  33. Reed R. R. 1981; Resolution of cointegrates between transposons γδ and Tn 3 defines the recombination site. Proc Natl Acad Sci USA 78:3428–3432
    [Google Scholar]
  34. Reyrat J. M, Berthet F. X., Gicquel B. 1995; The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guérin. Proc Natl Acad Sci USA 92:8768–8772
    [Google Scholar]
  35. Sambrook J, Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sander P, Meier A., Bottger E. C. 1995; rpsL +: a dominant selectable marker for gene replacement in mycobacteria. Mol Microbiol 16:991–1000
    [Google Scholar]
  37. Sirakova T. D, Thirumala A. K, Dubey V. S, Sprecher H., Kolattukudy P. E. 2001; The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem 276:16833–16839
    [Google Scholar]
  38. Steyn A. J. C, Collins D. M, Hondalus M. K, Jacobs W. R. Jr, Kawakami R. P., Bloom B. R. 2002; Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci USA 99:3147–3152
    [Google Scholar]
  39. Stover C. K, de la Cruz V. F, Fuerst T. R. 11 other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460
    [Google Scholar]
  40. Sundar Raj C. V., Ramakrishnan T. 1970; Transduction in Mycobacterium smegmatis . Nature 228:280–281
    [Google Scholar]
  41. Zinder N., Lederberg J. 1952; Genetic exchange in Salmonella . J Bacteriol 64:679–699
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3007
Loading
/content/journal/micro/10.1099/00221287-148-10-3007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error