1887

Abstract

The genes that encode the -type nitric oxide reductase from USDA110 have been isolated and characterized. and encode the cytochrome -containing subunit II and cytochrome -containing subunit I of nitric oxide reductase, respectively. encodes a protein with an ATP/GTP-binding motif, and the predicted gene product shows similarity with NorD from other denitrifiers. Mutational analysis indicates that the two structural and genes are required for microaerobic growth under nitrate-respiring conditions. A mutant strain lacking a functional gene also lacked the 16 kDa -type cytochrome that is normally detectable by haem-staining of proteins from membranes of microaerobically grown wild-type cells. Expression of a transcriptional fusion of the promoter region to the reporter gene (P) was not detected in aerobically grown cells of USDA110, but the fusion was induced threefold when the cells were cultured under microaerobic conditions (1% O) with either nitrite or nitric oxide, and about 18-fold when nitrate was the N oxide present in the medium. The P fusion was not expressed in the mutant strain 9043, but complementation of the mutant with the gene restored β-galactosidase activity to levels similar to those found in the parental strain. The promoter region of the genes has been characterized by primer extension. A major transcript initiates 455 bp downstream of the centre of a putative binding site for the transcription factor FixK.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-11-3553
2002-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/11/1483553a.html?itemId=/content/journal/micro/10.1099/00221287-148-11-3553&mimeType=html&fmt=ahah

References

  1. Amarger N. 2001; Rhizobia in the field. Adv Agron 73:109–168
    [Google Scholar]
  2. Anthamatten D., Hennecke H. 1991; The regulatory status of the fixL - and fixJ -like genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti. Mol Gen Genet 225:38–48
    [Google Scholar]
  3. Arai H, Igarashi Y., Kodama T. 1995; The structural genes for nitric oxide reductase from Pseudomonas aeruginosa . Biochim Biophys Acta 1261:279–284
    [Google Scholar]
  4. Arai H, Kodama T., Igarashi Y. 1997; Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa . Mol Microbiol 25:1141–1148
    [Google Scholar]
  5. Arai H, Kodama T., Higarashi Y. 1999; Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa. FEMS Microbiol Lett 170:19–24
    [Google Scholar]
  6. Baker S. C, Ferguson S. J, Ludwig B, Page M. D, Richter O.-M. H., van Spanning R. J. M. 1998; Molecular genetics of the genus Paracoccus : metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62:1046–1078
    [Google Scholar]
  7. Bartnikas T. B, Tosques I. E, Laratta W. P, Shi J., Shapleigh J. P. 1997; Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179:3534–3540
    [Google Scholar]
  8. Bates J. N, Baker M. T, Guerra R. Jr, Harrison D. G. 1991; Nitric oxide generation from nitroprusside by vascular tissue: evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol 42:SupplS157–S165
    [Google Scholar]
  9. Bedzyk L, Wang T., Ye R. W. 1999; The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J Bacteriol 181:2802–2806
    [Google Scholar]
  10. Bott M, Ritz D., Hennecke H. 1991; The Bradyrhizobium japonicum cycM gene encodes a membrane-anchored homolog of mitochondrial cytochrome c . J Bacteriol 173:6766–6772
    [Google Scholar]
  11. Büsch A, Friedrich B., Cramm R. 2002; Characterization of the norB gene, encoding nitric oxide reductase, in the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 68:668–672
    [Google Scholar]
  12. Cramm R, Siddiqui R. A., Friedrich B. 1997; Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J Bacteriol 179:6769–6777
    [Google Scholar]
  13. Cramm R, Pohlman A., Friedrich B. 1999; Purification and characterization of the single-component nitric oxide reductase from Ralstonia eutropha H16. FEBS Lett 460:6–10
    [Google Scholar]
  14. de Boer A. P, van der Oost J, Reijnders W. N. H, Westerhoff V, Stouthamer A. H., van Spanning R. J. M. 1996; Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans . Eur J Biochem 242:592–600
    [Google Scholar]
  15. Dumorwitz M. C., Maier R. J. 1998; The FixK2 protein is involved in regulation of symbiotic hydrogenase expression in Bradyrhizobium japonicum . J Bacteriol 180:3253–3256
    [Google Scholar]
  16. Fischer H. M. 1994; Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386
    [Google Scholar]
  17. Fischer H. M, Velasco L, Delgado M. J, Bedmar E. J, Schären S, Zingg D, Göttfert M., Hennecke H. 2001; One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis. J Bacteriol 183:1300–1311
    [Google Scholar]
  18. Gilles-Gonzalez M. A, Gonzalez G., Perutz M. F. 1995; Kinase activity of oxygen sensor FixL depends on the spin state of its heme iron. Biochemistry 34:232–236
    [Google Scholar]
  19. Hendriks J, Oubrie A, Castresana J, Urbani A, Gemeinhardt S., Saraste M. 2000; Nitric oxide reductase in bacteria. Biochim Biophys Acta 1459266–273
    [Google Scholar]
  20. Hutchings M. I., Spiro S. 2000; The nitric oxide regulated nor promoter of Paracocus denitrificans . Microbiology 146:2635–2641
    [Google Scholar]
  21. Jüngst A., Zumft W. G. 1992; Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ , a novel gene in the denitrification gene cluster of Pseudomonas stutzeri . FEBS Lett 314:308–314
    [Google Scholar]
  22. Kovach M. E, Phillips R. W, Elzer P. H, Roop R. M. 2nd, Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. BioTechniques 16:800–802
    [Google Scholar]
  23. Kukimoto M, Nishiyama M, Tanokura M., Horinouchi S. 2000; Gene organization for nitric oxide reduction in Alcaligenes faecalis S-6. Biosci Biotechnol Biochem 64:852–857
    [Google Scholar]
  24. Kündig C, Hennecke H., Göttfert M. 1993; Correlated and physical map of the Bradyrhizobium japonicum 110 genome. J Bacteriol 175:613–622
    [Google Scholar]
  25. Kwiatkowski A., Shapleigh J. P. 1996; Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Biol Chem 271:24382–24388
    [Google Scholar]
  26. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Nellen-Anthamatten D, Rossi P, Kullik P. I, Babst M, Fisher H. M., Hennecke H. 1998; Bradyrhizobium japonicum FixK2, a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen. J Bacteriol 180:5251–5255
    [Google Scholar]
  28. Nienaber A, Huber A, Göttfert M, Hennecke H., Fischer H. M. 2000; Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization. J Bacteriol 182:1472–1480
    [Google Scholar]
  29. O’Hara G. W., Daniel R. 1985; Rhizobial denitrification: a review. Soil Biol Biochem 17:1–9
    [Google Scholar]
  30. Preisig O, Anthamatten D., Hennecke H. 1993; Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci USA 90:3309–3313
    [Google Scholar]
  31. Preisig O, Zufferey R, Thöny-Meyer L, Appleby C. A., Hennecke H. 1996; A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum . J Bacteriol 178:1532–1538
    [Google Scholar]
  32. Regensburger B., Hennecke H. 1983; RNA polymerase from Rhizobium japonicum . Arch Microbiol 135:103–109
    [Google Scholar]
  33. Richardson D. J., Watmough N. J. 1999; Inorganic nitrogen metabolism in bacteria. Curr Opin Chem Biol 3:297–219
    [Google Scholar]
  34. Rodgers K. R, Lukat-Rodgers G. S., Tang L. 2000; Nitrosyl adducts of FixL as probes of heme environment. J Biol Inorg Chem 5:642–654
    [Google Scholar]
  35. Sakurai N., Sakurai T. 1997; Isolation and characterization of nitric oxide reductase from Paracoccus halodenitrificans . Biochemistry 36:13809–13815
    [Google Scholar]
  36. Sambrook J, Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Simon R, Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  38. Spaink H. P, Okker H. R. J, Wijffelman C. A, Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39
    [Google Scholar]
  39. Spiro S. 1994; The FNR family of transcriptional regulators. Antonie Leeuwenhoek 66:23–36
    [Google Scholar]
  40. Thöny-Meyer L, Stax D., Hennecke H. 1989; An unusual gene cluster for the cytochrome bc 1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell 57:683–697
    [Google Scholar]
  41. Tosques I. E, Shi J., Shapleigh J. P. 1996; Cloning and characterization of nnrR , whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Bacteriol 178:4958–4964
    [Google Scholar]
  42. Tuckerman J. R, Gonzalez G., Gilles-Gonzalez M. A. 2001; Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti . J Mol Biol 308:449–455
    [Google Scholar]
  43. Vairinhos F, Wallace W., Nicholas D. J. D. 1989; Simultaneous assimilation and denitrification of nitrate by Bradyrhizobium japonicum . J Gen Microbiol 135:189–193
    [Google Scholar]
  44. van Spanning R. J. M, de Boer A. P, Reijnders W. N, Spiro S, Westerhoff H. V, Stouthamer A. H., van der Oost J. 1995; Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett 360:151–154
    [Google Scholar]
  45. van Spanning R. J. M, Houben E, Reijnders W. N. M, Spiro S, Westerhoff A, Stouthamer H. V., Saunders N. 1999; Nitric oxide is a signal for NNR-mediated transcription activation in Paracoccus denitrificans . J Bacteriol 181:4129–4132
    [Google Scholar]
  46. Vargas C, McEwan A. G., Downie J. A. 1993; Detection of c -type cytochromes using enhanced chemiluminiscence. Anal Biochem 209:323–326
    [Google Scholar]
  47. Velasco L, Mesa S, Delgado M. J., Bedmar E. J. 2001; Characterization of the nirK gene encoding the respiratory Cu-containing nitrite redutase of Bradyrhizobium japonicum . Biochim Biophys Acta 1521130–134
    [Google Scholar]
  48. Vincent J. M. 1974; Root-nodule symbioses with Rhizobium . In The Biology of Nitrogen Fixation pp 265–341 Edited by Quispel A. New York: Elsevier;
    [Google Scholar]
  49. Vollack K.-U., Zumft W. G. 2001; Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri . J Bacteriol 183:2516–2526
    [Google Scholar]
  50. Vollack K.-U, Härtig E, Körner H., Zumft W. G. 1999; Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri : characterization of four fnr -like genes, regulatory responses and cognate metabolic processes. Mol Microbiol 31:1681–1694
    [Google Scholar]
  51. Walker J. E, Saraste M, Runswick M. J., Gay N. J. 1982; Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  52. Watmough N. J, Butland G, Cheesman M. R, Moir J. W. B, Richardson D. J., Spiro S. 1999; Nitric oxide in bacteria: synthesis and consumption. Biochim Biophys Acta 1411456–474
    [Google Scholar]
  53. Wing H. J, Williams S. M., Busby S. J. 1995; Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol 177:6704–6710
    [Google Scholar]
  54. Yanisch-Perron C, Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  55. Yoshida M., Amano T. 1995; A common topology of proteins catalyzing ATP-triggered reactions. FEBS Lett 359:1–5
    [Google Scholar]
  56. Zumft W. G. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 4:533–616
    [Google Scholar]
  57. Zumft W. G, Braun C., Cuypers H. 1994; Nitric oxide reductase from Pseudomonas stutzeri : primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem 219:481–490
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-11-3553
Loading
/content/journal/micro/10.1099/00221287-148-11-3553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error