1887

Abstract

The fatty acid elongation system FAS-II is involved in the biosynthesis of mycolic acids, which are very long-chain fatty acids of the cell envelope specific to and other mycobacteria. A potential component of FAS-II, the protein MabA (FabG1), was overexpressed and purified. Sedimentation equilibrium analyses revealed that MabA undergoes a dimer to tetramer self-association with a dissociation constant of 22 μM. The protein was detected by Western blotting in a mycobacterial cell-wall extract that produces mycolic acids and in the FPLC FAS-II fraction. MabA was shown to catalyse the NADPH-specific reduction of β-ketoacyl derivatives, equivalent to the second step of a FAS-II elongation round. Unlike the known homologous proteins, MabA preferentially metabolizes long-chain substrates (C–C) and has a poor affinity for the C substrate, in agreement with FAS-II specificities. Molecular modelling of MabA structure suggested the presence of an unusually hydrophobic substrate-binding pocket holding a unique Trp residue, suitable for fluorescence spectroscopic analyses. In agreement with the enzyme kinetic data, the spectral properties of MabA were different in the presence of the C–C ligands as compared to the C ligand. Altogether, these data bring out distinctive enzymic and structural properties of MabA, which correlate with its predilection for long-chain substrates, in contrast to most of the other known ketoacyl reductases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-951
2002-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1480951a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-951&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Andersson A., Jordan D., Schneider G., Lindqvist Y. 1996; Crystal structure of the ternary complex of 1,3,8-trihydroxynaphthalene reductase from Magnaporthe grisea with NADPH and an active-site inhibitor. Structure 4:1161–1170 [CrossRef]
    [Google Scholar]
  3. Banerjee A., Dubnau E., Quémard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R. Jr 1994; inhA , a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis . Science 263:227–230 [CrossRef]
    [Google Scholar]
  4. Banerjee A., Sugantino M., Sacchettini J. C., Jacobs W. R. Jr 1998; The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology 144:2697–2704 [CrossRef]
    [Google Scholar]
  5. Beechem J. M., Gratton E., Ameloot M. A., Knutson J. R., Brand L. 1991; The global analysis of fluorescence intensity and anisotropy decay data: second-generation theory and programs. In Fluorescence Spectroscopy pp 241–301 Edited by Lakowicz J. R. New York: Plenum;
    [Google Scholar]
  6. Bloch K. 1977; Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis . Adv Enzymol 45:1–84
    [Google Scholar]
  7. Choi K. H., Kremer L., Besra G. S., Rock C. O. 2000; Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis . J Biol Chem 275:28201–28207
    [Google Scholar]
  8. Daffé M., Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203
    [Google Scholar]
  9. Eisenberg D., Luthy R., Bowie J. U. 1997; VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404
    [Google Scholar]
  10. Fisher M., Kroon J. T. M., Martindale W., Stuitje A. R., Slabas A. R., Rafferty J. B. 2000; The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure 8:339–347 [CrossRef]
    [Google Scholar]
  11. Gouet P., Courcelle E., Stuart D. I., Metoz F. 1999; ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308 [CrossRef]
    [Google Scholar]
  12. Jörnvall H., Persson B., Krook M., Atrian S., Gonzalez-Duarte R., Jeffery J., Ghosh D. 1995; Short-chain dehydrogenases/reductases (SDR. Biochemistry 34:6003–6013 [CrossRef]
    [Google Scholar]
  13. Kraulis P. J. 1991; molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 24:946–950 [CrossRef]
    [Google Scholar]
  14. Kremer L., Douglas J. D., Baulard A. R. 9 other authors 2000; Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis . J Biol Chem 275:16857–16864 [CrossRef]
    [Google Scholar]
  15. Kremer L., Nampoothiri K. M., Lesjean. 7 other authors 2001; Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA: AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J Biol Chem 276:27967–27974 [CrossRef]
    [Google Scholar]
  16. Labesse G., Mornon J. P. 1998; A Tool for Incremental Threading Optimization (TITO) to help alignment and modelling of remote homologs. Bioinformatics 14:206–211 [CrossRef]
    [Google Scholar]
  17. Labesse G., Vidal-Cros A., Chomilier J., Gaudry M., Mornon J.-P. 1994; Structural comparisons lead to the definition of a new superfamily of NAD(P)(H)-accepting oxidoreductases: the single-domain reductases/epimerases/dehydrogenases (the ‘RED’ family). Biochem J 304:95–99
    [Google Scholar]
  18. Lakowicz J. R. 1983; Protein fluorescence. In Principles of Fluorescence Spectroscopy pp 342–381 Edited by Lakowicz J. R. New York: Plenum;
    [Google Scholar]
  19. Laval F., Lanéelle M. A., Déon C., Montsarrat B., Daffé M. 2001; Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Anal Chem 73:4537–4544 [CrossRef]
    [Google Scholar]
  20. Liu J., Barry C. E. 3rd, Besra G. S., Nikaido H. 1996; Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551 [CrossRef]
    [Google Scholar]
  21. Marrakchi H., Lanéelle G., Quémard A. 2000; InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 146:289–296
    [Google Scholar]
  22. Mdluli K., Slayden R. A., Zhu Y., Ramaswamy S., Pan X., Mead D., Crane D. D., Musser J. M., Barry C. E. 3rd 1998; Inhibition of a Mycobacterium tuberculosis beta -ketoacyl ACP synthase by isoniazid. Science 280:1607–1610 [CrossRef]
    [Google Scholar]
  23. Munier-Lehmann H., Chaffotte A., Pochet S., Labesse G. 2001; Thymidylate kinase of Mycobacterium tuberculosis : a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci 10:1195–1205 [CrossRef]
    [Google Scholar]
  24. Nakajima K., Kato H., Oda J., Yamada Y., Hashimoto T. 1999; Site-directed mutagenesis of putative substrate-binding residues reveals a mechanism controlling the different stereospecificities of two tropinone reductases. J Biol Chem 274:16563–16568 [CrossRef]
    [Google Scholar]
  25. Odriozola J. M., Ramos J. A., Bloch K. 1977; Fatty acid synthetase activity in Mycobacterium smegmatis . Characterization of the acyl carrier protein-dependent elongating system. Biochim Biophys Acta 488:207–217 [CrossRef]
    [Google Scholar]
  26. Quémard A., Lacave C., Lanéelle G. 1991; Isoniazid inhibition of mycolic acid synthesis by cell free extracts of sensitive and resistant strains of Mycobacterium aurum . Antimicrob Agents Chemother 35:1035–1039 [CrossRef]
    [Google Scholar]
  27. Quémard A., Sacchettini J. C., Dessen A., Vilchèze C., Bittman R., Jacobs W. R. Jr, Blanchard J. S. 1995; Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis . Biochemistry 34:8235–8241 [CrossRef]
    [Google Scholar]
  28. Quémard A., Dessen A., Sugantino M., Jacobs W. R. Jr, Sacchettini J. C., Blanchard J. S. 1996; Binding of catalase-peroxidase-activated isoniazid to wild-type and mutant Mycobacterium tuberculosis enoyl-ACP reductases. J Am Chem Soc 118:1561–1562 [CrossRef]
    [Google Scholar]
  29. Rafferty J. B., Simon J. W., Baldock C., Artymiuk P. J., Baker P. J., Stuitje A. R., Slabas A. R., Rice D. W. 1995; Common themes in redox chemistry emerge from the X-ray structure of oilseed rape ( Brassica napus ) enoyl acyl carrier protein reductase. Structure 3:927–938 [CrossRef]
    [Google Scholar]
  30. Rozwarski D. A., Grant G. A., Barton D. H. R., Jacobs W. R. Jr, Sacchettini J. C. 1998; Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis . Science 279:98–102 [CrossRef]
    [Google Scholar]
  31. Rozwarski D. A., Vilchèze C., Sugantino M., Bittman R., Sacchettini J. C. 1999; Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. J Biol Chem 274:15582–15589 [CrossRef]
    [Google Scholar]
  32. Sali A., Blundell T. L. 1993; Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815 [CrossRef]
    [Google Scholar]
  33. Sheldon P. S., Kekwick R. G. O., Sidebottom C., Smith C. G., Slabas A. R. 1990; 3-Oxoacyl-(acyl-carrier protein) reductase from avocado ( Persea americana ) fruit mesocarp. Biochem J 271:713–720
    [Google Scholar]
  34. Sheldon P. S., Kekwick R. G., Smith C. G., Sidebottom C., Slabas A. R. 1992; 3-Oxoacyl-[ACP] reductase from oilseed rape ( Brassica napus ). Biochim Biophys Acta 1120151–159 [CrossRef]
    [Google Scholar]
  35. Shimakata T., Stumpf P. K. 1982; Purification and characterization of β-ketoacyl-[acyl-carrier-protein] reductase, of β-hydroxyacyl-[acyl-carrier-protein] dehydrase, and enoyl-[acyl-carrier-protein] reductase from Spinacea oleracea leaves. Arch Biochem Biophys 218:77–91 [CrossRef]
    [Google Scholar]
  36. Sippl M. J. 1993; Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362 [CrossRef]
    [Google Scholar]
  37. Takayama K., Wang L., David H. L. 1972; Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis . Antimicrob Agents Chemother 2:29–35 [CrossRef]
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  39. Thompson J. E., Basarab G. S., Andersson A., Lindqvist Y., Jordan D. B. 1997; Trihydroxynaphthalene reductase from Magnaporthe grisea : realization of an active center inhibitor and elucidation of the kinetic mechanism. Biochemistry 36:1852–1860 [CrossRef]
    [Google Scholar]
  40. Vagelos P. R., Alberts A. W. 1960; Chemical synthesis of β-ketooctanoyl coenzyme A. Anal Biochem 1:8–16 [CrossRef]
    [Google Scholar]
  41. Vilchèze C., Morbidoni H. R., Weisbrod T. R., Iwamoto H., Sacchettini J. C., Jacobs W. R. Jr 2000; Inactivation of the inhA -encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis . J Bacteriol 182:4059–4067 [CrossRef]
    [Google Scholar]
  42. Zabinski R. F., Blanchard J. S. 1997; The requirement for manganese and oxygen in the isoniazid-dependent inactivation of Mycobacterium tuberculosis enoyl reductase. J Am Chem Soc 119:2331–2332 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-951
Loading
/content/journal/micro/10.1099/00221287-148-4-951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error