1887

Abstract

The toxin-coregulated pilus (TCP) is a critical determinant of the pathogenicity of . This bundle-forming pilus is an essential intestinal colonization factor and also serves as a receptor for CTXϕ, the filamentous phage that encodes cholera toxin (CT). TCP is a polymer of repeating subunits of the major pilin protein TcpA and is found within the pathogenicity island (VPI). In this study genetic variation at the locus in toxigenic isolates of was investigated and three novel TcpA sequences from strains V46, V52 and V54, belonging to serogroups O141, O37 and O8, respectively, were identified. These novel alleles grouped into three distinct clonal lineages. The polymorphisms in TcpA were predominantly located in the carboxyl region of TcpA in surface-exposed regions of TCP fibres. Comparison of the genetic diversity among isolates at the locus with that of , another locus within the VPI, and , a chromosomal locus, revealed that sequences are far more diverse than these other loci. Most likely, this diversity is a reflection of diversifying selection in adaptation to the host immune response or to CTXϕ susceptibility. An assessment of the functional properties of the variant sequences in the non-O1 strains was carried out by analysing whether these strains could be infected by CTXϕ and colonize the suckling mouse. Similar to El Tor strains of . O1, CTXϕ infection of these strains required the exogenous expression of , suggesting that in these strains ToxT regulates TCP expression and that these TcpA variants can serve as CTXϕ receptors. All the non-O1 serogroup isolates tested were capable of colonizing the suckling mouse small intestine, suggesting that the different TcpA variants could function as colonization factors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1655
2002-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481655a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1655&mimeType=html&fmt=ahah

References

  1. Albert M. J., Siddique A. K., Islam M. S., Faruque A. S., Ansaruzzaman M., Faruque S. M., Sack R. B. 1993; Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 341:704
    [Google Scholar]
  2. Beltran P., Delgado G., Navarro A., Trujillo F., Selander R. K., Cravioto A. 1999; Genetic diversity and population structure of Vibrio cholerae . J Clin Microbiol 37:581–590
    [Google Scholar]
  3. Bik E. M., Bunschoten A. E., Gouw R. D., Mooi F. R. 1995; Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14:209–216
    [Google Scholar]
  4. Bik E. M., Gouw R. D., Mooi F. R. 1996; DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J Clin Microbiol 34:1453–1461
    [Google Scholar]
  5. Blank T. E., Zhong H., Bell A. L., Whittam T. S., Donnenberg M. S. 2000; Molecular variation among type IV pilin ( bfpA ) genes from diverse enteropathogenic Escherichia coli strains. Infect Immun 68:7028–7038 [CrossRef]
    [Google Scholar]
  6. Bockemuhl J., Meinicke D. 1976; Value of phage typing of Vibrio cholerae biotype El Tor in West Africa. Bull W H O 54:187–192
    [Google Scholar]
  7. Boyd E. F., Hartl D. L. 1998; Diversifying selection governs nucleotide polymorphism in fimbriae pilin genes of Escherichia coli . J Mol Evol 47:258–267 [CrossRef]
    [Google Scholar]
  8. Boyd E. F., Nelson K., Wang F.-S., Whittam T. S., Selander R. K. 1994; Molecular genetic basis of allelic polymorphism in malate dehydrogenase ( mdh ) in natural populations of Escherichia coli and Salmonella enterica . Proc Natl Acad Sci USA 91:1280–1284 [CrossRef]
    [Google Scholar]
  9. Boyd E. F., Wang F.-S., Whittam T. S., Selander R. K. 1996; Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 62:804–808
    [Google Scholar]
  10. Boyd E. F., Heilpern A. J., Waldor M. K. 2000; Molecular analysis of a putative CTXϕ precursor and evidence for independent acquisition of distinct CTXϕs by toxigenic Vibrio cholerae . J Bacteriol 182:5530–5538 [CrossRef]
    [Google Scholar]
  11. Brown R. C., Taylor R. K. 1995; Organization of tcp, acf and toxT genes within a ToxT-dependent operon. Mol Microbiol 16:425–439 [CrossRef]
    [Google Scholar]
  12. Byun R., Elbourne L. D., Lan R., Reeves P. R. 1999; Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun 67:1116–1124
    [Google Scholar]
  13. Chakraborty S., Mukhopadhyay A. K., Bhadra R. K. 8 other authors 2000; Virulence genes in environmental strains of Vibrio cholerae . Appl Environ Microbiol 66:4022–4028 [CrossRef]
    [Google Scholar]
  14. Davis B. M., Kimsey H. H., Chang W., Waldor M. K. 1999; The Vibrio cholerae O139 Calcutta CTXϕ is infectious and encodes a novel repressor. J Bacteriol 181:6779–6787
    [Google Scholar]
  15. Davis B. M., Moyer K. E., Boyd E. F., Waldor M. K. 2000; CTX prophages in classical biotype Vibrio cholerae : functional phage genes but dysfunctional phage genomes. J Bacteriol 182:6992–6998 [CrossRef]
    [Google Scholar]
  16. DiRita V. J., Neely M., Taylor R. K., Bruss P. M. 1996; Differential expression of the ToxR regulon in classical and E1 Tor biotypes of Vibrio cholerae is due to biotype-specific control over toxT expression. Proc Natl Acad Sci USA 93:7991–7995 [CrossRef]
    [Google Scholar]
  17. Dubose F., Dykhuizen D. E., Hartl D. L. 1988; Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli . Proc Natl Acad Sci USA 85:7036–7040 [CrossRef]
    [Google Scholar]
  18. Faast R., Ogierman M. A., Stroeher U. H., Manning P. A. 1989; Nucleotide sequence of the structural gene, tcpA , for a major pilin subunit of Vibrio cholerae . Gene 85:227–231 [CrossRef]
    [Google Scholar]
  19. Faruque S. M., Albert M. J., Mekalanos J. J. 1998; Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae . Microbiol Mol Biol Rev 62:1301–1314
    [Google Scholar]
  20. Ghosh C., Nandy R. K., Dasgupta S. K., Nair G. B., Hall R. H., Ghose A. C. 1997; A search for cholera toxin (CT), toxin coregulated pilus (TCP), the regulatory element ToxR and other virulence factors in non-O1/non-O139 Vibrio cholerae . Microb Pathog 22:199–208 [CrossRef]
    [Google Scholar]
  21. Hanne L. F., Finkelstein R. A. 1982; Characterization and distribution of the hemagglutinins produced by Vibrio cholerae. Infect Immun. 36209–214
  22. Heidelberg J. F., Eisen J. A., Nelson W. C. 23 other authors 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 2000477–483
    [Google Scholar]
  23. Heilpern A. J., Waldor M. K. 2000; CTXϕ infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol 182:1739–1747 [CrossRef]
    [Google Scholar]
  24. Herrington D. A., Hall R. H., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. 1988; Toxin, toxin-coregulated pili and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492 [CrossRef]
    [Google Scholar]
  25. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402
    [Google Scholar]
  26. Holliger P., Riechmann L. 1997; A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fd. Structure 5:265–275 [CrossRef]
    [Google Scholar]
  27. Iredell J. R., Manning P. A. 1997; Translocation failure in a type-4 pilin operon: rfb and tcpT mutants in Vibrio cholerae . Gene 192:71–77 [CrossRef]
    [Google Scholar]
  28. Jacobson A. 1972; Role of F pili in the penetration of bacteriophage fl. J Virol 10:835–843
    [Google Scholar]
  29. Karaolis D. K., Lan R., Reeves P. R. 1995; The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae . J Bacteriol 177:3191–3198
    [Google Scholar]
  30. Karaolis D. K., Johnson J. A., Bailey C. C., Boedeker E. C., Kaper J. B., Reeves P. R. 1998; A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA 95:3134–3139 [CrossRef]
    [Google Scholar]
  31. Karaolis D. K., Lan R., Kaper J. B., Reeves P. R. 2001; Comparison of Vibrio cholerae pathogenicity islands in sixth and seventh pandemic strains. Infect Immun 69:1947–1952 [CrossRef]
    [Google Scholar]
  32. Kaufman M. R., Shaw C. E., Jones I. D., Taylor R. K. 1993; Biogenesis and regulation of the Vibrio cholerae toxin-coregulated pilus: analogies to other virulence factor secretory systems. Gene 126:43–49 [CrossRef]
    [Google Scholar]
  33. Kimsey H. H., Waldor M. K. 1998; CTXphi immunity: application in the development of cholera vaccines. Proc Natl Acad Sci USA 95:7035–7039 [CrossRef]
    [Google Scholar]
  34. Kirn T. J., Lafferty M. J., Sandoe C. M., Taylor R. K. 2000; Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae . Mol Microbiol 35:896–910 [CrossRef]
    [Google Scholar]
  35. Kovach M. E., Shaffer M. D., Peterson K. M. 1996; A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae . Microbiology 142:2165–2174 [CrossRef]
    [Google Scholar]
  36. Li J., Ochman H., Groisman E. A., Boyd E. F., Solomon F., Nelson K., Selander R. K. 1995; Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica . Proc Natl Acad Sci USA 92:7252–7256 [CrossRef]
    [Google Scholar]
  37. Manning P. A. 1997; The tcp gene cluster of Vibrio cholerae . Gene 192:63–70 [CrossRef]
    [Google Scholar]
  38. Mekalanos J. J., Swartz D. J., Pearson G. D., Harford N., Groyne F., de Wilde M. 1983; Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306:551–557 [CrossRef]
    [Google Scholar]
  39. Mukhopadhyay A. K., Chakraborty S., Takeda Y., Nair G. B., Berg D. E. 2001; Characterization of VPI pathogenicity island and CTXphi prophage in environmental strains of Vibrio cholerae . J Bacteriol 183:4737–4746 [CrossRef]
    [Google Scholar]
  40. Nair G. B., Bag P. K., Shimada T., Ramamurthy T., Takeda T., Yamamoto S., Kurazono H., Takeda Y. 1994; Characterization of phenotypic, serological, and toxigenic traits of Vibrio cholerae O139 bengal. J Clin Microbiol 32:2775–2779
    [Google Scholar]
  41. Nandi B., Nandy R. K., Vicente A. C., Ghose A. C. 2000; Molecular characterization of a new variant of toxin-coregulated pilus protein (TcpA) in a toxigenic non-O1/non-O139 strain of Vibrio cholerae . Infect Immun 68:948–952 [CrossRef]
    [Google Scholar]
  42. Nelson K., Selander R. K. 1992; Evolutionary genetics of the proline permease gene ( putP ) and the control region of the proline utilization operon in populations of Salmonella and Escherichia coli . J Bacteriol 174:6886–6895
    [Google Scholar]
  43. Nelson K., Wang F.-S., Boyd E. F., Selander R. K. 1997; Size and sequence polymorphism in the isocitrate dehydrogenase kinase/phosphatase gene ( aceK ) and flanking regions in strains of Salmonella enterica and Escherichia coli . Genetics 147:1509–1520
    [Google Scholar]
  44. Novais R. C., Coelho A., Salles C. A., Vicente A. C. 1999; Toxin-co-regulated pilus cluster in non-O1, non-toxigenic Vibrio cholerae : evidence of a third allele of pilin gene. FEMS Microbiol Lett 171:49–55 [CrossRef]
    [Google Scholar]
  45. Ogierman M. A., Voss E., Meaney C., Faast R., Attridge S. R., Manning P. A. 1996; Comparison of the promoter proximal regions of the toxin-co-regulated tcp gene cluster in classical and El Tor strains of Vibrio cholerae O1. Gene 170:9–16 [CrossRef]
    [Google Scholar]
  46. Pearson G. D., Woods A., Chiang S. L., Mekalanos J. J. 1993; CTX genetic element encodes a site-specific recombination system and an intestinal colonization factor. Proc Natl Acad Sci USA 90:3750–3754 [CrossRef]
    [Google Scholar]
  47. Peek J. A., Taylor R. K. 1992; Characterization of a periplasmic thiol: disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae . Proc Natl Acad Sci USA 89:6210–6214 [CrossRef]
    [Google Scholar]
  48. Pupo G. M., Karaolis D. K. R., Lan R., Reeves P. R. 1997; Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun 65:2685–2692
    [Google Scholar]
  49. Rhine J. A., Taylor R. K. 1994; TcpA pilin sequences and colonization requirements for O1 and O139 Vibrio cholerae . Mol Microbiol 13:1013–1020 [CrossRef]
    [Google Scholar]
  50. Riechmann L., Holliger P. 1997; The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli . Cell 90:351–360 [CrossRef]
    [Google Scholar]
  51. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  52. Sayle R. A., Milner-White E. J. 1995; rasmol: biomolecular graphics for all. Trends Biochem Sci 20:374–376 [CrossRef]
    [Google Scholar]
  53. Shaw C. E., Taylor R. K. 1990; Vibrio cholerae O395 tcpA pilin gene sequence and comparison of predicted protein structural features to those of type 4 pilins. Infect Immun 58:3042–3049
    [Google Scholar]
  54. Skorupski K., Taylor R. K. 1997; Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol Microbiol 25:1003–1009 [CrossRef]
    [Google Scholar]
  55. Sun D. X., Seyer J. M., Kovari I., Sumrada R. A., Taylor R. K. 1991; Localization of protective epitopes within the pilin subunit of the Vibrio cholerae toxin-coregulated pilus. Infect Immun 59:114–118
    [Google Scholar]
  56. Sun T. P., Webster R. E. 1986; fII, a bacterial locus required for filamentous phage infection and its relation to colicin-tolerant tolA and tolB . J Bacteriol 165:107–115
    [Google Scholar]
  57. Sun T. P., Webster R. E. 1987; Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli . J Bacteriol 169:2667–2674
    [Google Scholar]
  58. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. 1987; Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84:2833–2837 [CrossRef]
    [Google Scholar]
  59. Tennent J. M. 1994; Type 4 fimbriae. In Fimbriae: Adhesion, Genetics, Biogenesis, and Vaccines pp 127–146 Edited by Klemm P. Boca Raton: CRC Press;
    [Google Scholar]
  60. Voss E., Manning P. A., Attridge S. R. 1996; The toxin-coregulated pilus is a colonization factor and protective antigen of Vibrio cholerae El Tor. Microb Pathog 20:141–153 [CrossRef]
    [Google Scholar]
  61. Waldor M. K., Mekalanos J. J. 1996; Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914 [CrossRef]
    [Google Scholar]
  62. Waldor M. K., Colwell R., Mekalanos J. J. 1994; The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci USA 91:11388–11392 [CrossRef]
    [Google Scholar]
  63. Zinnaka Y., Carpenter C. C. 1972; An enterotoxin produced by noncholera vibrios. Johns Hopkins Med 131:403–411
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1655
Loading
/content/journal/micro/10.1099/00221287-148-6-1655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error