1887

Abstract

HPr kinase/phosphatase (HPrK/P) is the key protein in regulation of carbon metabolism in and many other Gram-positive bacteria. Whether this enzyme acts as a kinase or phosphatase is determined by the nutrient status of the cell. Mutational analysis of residues in a Walker A box nucleotide-binding motif revealed that it is not only important for kinase but is also involved in phosphatase activity. In addition, a signature sequence specifically conserved among HPrK/P orthologues is required for phosphatase activity and may be involved in interaction with HPr/HPr-(Ser46)-P. Carbon catabolite repression was abolished in a strain expressing a mutant form of HPrK/P deficient in kinase and phosphatase activities. The growth characteristics of this strain were similar to those of the wild-type. In contrast, strains expressing HPrK/P with partial kinase and no phosphatase activities showed growth impairment but exhibited catabolite repression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1805
2002-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481805a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1805&mimeType=html&fmt=ahah

References

  1. Bachem S., Faires N., Stülke J. 1997; Characterization of the presumptive phosphorylation sites of the Bacillus subtilis glucose permease by site-directed mutagenesis: implication in glucose transport and catabolite repression. FEMS Microbiol Lett 156:233–238 [CrossRef]
    [Google Scholar]
  2. Brochu D., Vadeboncoeur C. 1999; The HPr(Ser) kinase of Streptococcus salivarius : purification, properties, and cloning of the hprK gene. J Bacteriol 181:709–717
    [Google Scholar]
  3. Deutscher J., Engelmann R. 1984; Purification and characterization of an ATP-dependent protein kinase from Streptococcus faecalis . FEMS Microbiol Lett 23:157–162 [CrossRef]
    [Google Scholar]
  4. Deutscher J., Saier M. H. Jr 1983; ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes . Proc Natl Acad Sci USA 80:6790–6794 [CrossRef]
    [Google Scholar]
  5. Deutscher J., Küster E., Bergstedt U., Charrier V., Hillen W. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol Microbiol 15:1049–1053 [CrossRef]
    [Google Scholar]
  6. Dossonnet V., Monedero V., Zagorec M., Galinier A., Perez-Martinez G., Deutscher J. 2000; Phosphorylation of HPr by the bifunctional HPr kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J Bacteriol 182:2582–2590 [CrossRef]
    [Google Scholar]
  7. Faires N., Tobisch S., Bachem S., Martin-Verstraete I., Hecker M., Stülke J. 1999; The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis . J Mol Microbiol Biotechnol 1:141–148
    [Google Scholar]
  8. Fieulaine S., Morera S., Poncet S., Monedero V., Gueguen-Chaignon V., Galinier A., Janin J., Deutscher J., Nessler S. 2001; X-ray structure of HPr kinase: a bacterial protein kinase with a P-loop nucleotide-binding domain. EMBO J 20:3917–3927 [CrossRef]
    [Google Scholar]
  9. Galinier A., Haiech J., Kilhoffer M.-C., Jaquinod M., Stülke J., Deutscher J., Martin-Verstraete I. 1997; The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci USA 94:8439–8444 [CrossRef]
    [Google Scholar]
  10. Galinier A., Kravanja M., Engelmann R., Hengstenberg W., Kilhoffer M.-C., Deutscher J., Haiech J. 1998; New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci USA 95:1823–1828 [CrossRef]
    [Google Scholar]
  11. Galinier A., Deutscher J., Martin-Verstraete I. 1999; Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 286:307–314 [CrossRef]
    [Google Scholar]
  12. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B.-C., Herrmann R. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res 24:4420–4449 [CrossRef]
    [Google Scholar]
  13. Huynh P. L., Jankovic I., Schnell N. F., Brückner R. 2000; Characterization of an HPr kinase mutant of Staphylococcus xylosus . J Bacteriol 182:1895–1902 [CrossRef]
    [Google Scholar]
  14. Ikeda T. P., Houtz E., LaPorte D. C. 1992; Isocitrate dehydrogenase kinase/phosphatase: identification of mutations which selectively inhibit phosphatase activity. J Bacteriol 174:1414–1416
    [Google Scholar]
  15. Jault J. M., Fieulaine S., Nessler S., Gonzalo P., Di Pietro A., Deutscher J., Galinier A. 2000; The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem 275:1773–1780 [CrossRef]
    [Google Scholar]
  16. Jones B. E., Dossonnet V., Küster E., Hillen W., Deutscher J., Klevit R. E. 1997; Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272:26530–26535 [CrossRef]
    [Google Scholar]
  17. Kravanja M., Engelmann R., Dossonnet V. 7 other authors 1999; The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 31:59–66 [CrossRef]
    [Google Scholar]
  18. Kunst F., Rapoport G. 1995; Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis . J. Bacteriol 177:2403–2407
    [Google Scholar]
  19. Lindner C., Stülke J., Hecker M. 1994; Regulation of xylanolytic enzymes in Bacillus subtilis . Microbiology 140:753–757 [CrossRef]
    [Google Scholar]
  20. Martin-Verstraete I., Deutscher J., Galinier A. 1999; Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 181:2966–2969
    [Google Scholar]
  21. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Monedero V., Poncet S., Mijakovic I., Fieulaine S., Dossonnet V., Martin-Verstraete I., Nessler S., Deutscher J. 2001; Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J 20:3928–3937 [CrossRef]
    [Google Scholar]
  23. Reizer J., Hoischen C., Titgemeyer F., Rivolta C., Rabus R., Stülke J., Karamata D., Saier M. H. Jr, Hillen W. 1998; A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 27:1157–1169 [CrossRef]
    [Google Scholar]
  24. Reizer J., Bachem S., Reizer A., Arnaud M., Saier M. H. Jr, Stülke J. 1999; Novel phosphotransferase system genes revealed by genome analysis – the complete complement of PTS components encoded within the genome of Bacillus subtilis . Microbiology 145:3419–3429
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Saraste M., Sibbald P. R., Wittinghofer A. 1990; The P-loop – a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434 [CrossRef]
    [Google Scholar]
  27. Schirmer F., Ehrt S., Hillen W. 1997; Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol 179:1329–1336
    [Google Scholar]
  28. Stülke J., Hillen W. 2000; Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880 [CrossRef]
    [Google Scholar]
  29. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G. 1997; Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25:65–78 [CrossRef]
    [Google Scholar]
  30. Vertommen D., Bertrand L., Sontag B., Di Pietro A., Louckx M. P., Vidal H., Hue L., Rider M. H. 1996; The ATP-binding site in the 2-kinase domain of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 271:17875–17880 [CrossRef]
    [Google Scholar]
  31. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  32. Zhu Y., Qin L., Yoshida T., Inouye M. 2000; Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain. Proc Natl Acad Sci USA 97:7808–7813 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1805
Loading
/content/journal/micro/10.1099/00221287-148-6-1805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error