1887

Abstract

Despite the introduction of mass vaccination in 1953 in The Netherlands, pertussis is currently an endemic disease with regular epidemic outbreaks. Changes in the population in the first 20 years after the introduction of vaccination were studied by indexing IS fingerprint types, fimbrial serotypes and 15 genes encoding surface proteins. Three periods were compared, the pre-vaccination period (1949–1952) and two subsequent periods, 1953–1958 and 1965–1972. Except for fimbrial serotypes, no changes were observed in the population between the first two periods. Mortality decreased fivefold and 543-fold in the periods 1953–1958 and 1965–1972, respectively, compared to the pre-vaccination period. The largest decrease in mortality coincided with significant changes in the population with respect to the frequencies of fimbrial serotypes, fingerprint types and alleles. A new fingerprint type (ft29), associated with the novel allele was observed in 50% of the isolates in the period 1965–1972. Of the 15 investigated genes, only showed a mismatch between the vaccine strains and clinical isolates, suggesting that it may have played a role in driving the observed changes. It is proposed that, within 10–20 years after the introduction of mass vaccination, an adaptive response occurred consisting of clonal expansion of strains, which expressed a pertussis toxin variant distinct from the vaccine variants. This adaptation had very little, if any, effect on mortality, however.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2011
2002-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482011a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2011&mimeType=html&fmt=ahah

References

  1. Andrews R., Herceg A., Roberts C. 1997; Pertussis notifications in Australia; 1991 to 1997 Commun Dis Intell 21:145–148
    [Google Scholar]
  2. Bass J. W., Wittler R. R. 1994; Return of epidemic pertussis in the United States. Pediatr Infect Dis J 13:343–345 [CrossRef]
    [Google Scholar]
  3. Blaskett A. C., Gulasekharam J., Fulton L. C. 1971; The occurrence of Bordetella pertussis serotypes in Australia, 1950–1970. Med J Aust 1:781–784
    [Google Scholar]
  4. Brennan M., Strebel P., George H., Yih W. K., Tachdjian R., Lett S. M., Cassiday P., Sanden G., Wharton M. 2000; Evidence for transmission of pertussis in schools, Massachusetts, 1996: epidemiologic data supported by pulsed-field gel electrophoresis studies. J Infect Dis 181:210–215 [CrossRef]
    [Google Scholar]
  5. Bronne-Shanbury C. J., Miller D., Stanfast A. F. B. 1976; The serotypes of Bordetella pertussis isolated in Great Britain between 1941 and 1968 and a comparison with the serotypes observed in other countries over this period. J Hyg 76:265–275 [CrossRef]
    [Google Scholar]
  6. Cassiday P., Sanden G., Heuvelman C., Mooi F., Bisgard K. M., Popovic T. 2000; Polymorphism in Bordetella pertussis pertactin and pertussis toxin virulence factors in the United States, 1935–1999. J Infect Dis 182:1402–1408 [CrossRef]
    [Google Scholar]
  7. Cohen H. H. 1958; Establishment of a dried standard pertussis vaccine. Antonie Leeuwenhoek 24:33–48 [CrossRef]
    [Google Scholar]
  8. Cohen H. H. 1963; Development of pertussis vaccine production and control in the National Institute of Public Health in The Netherlands during the years 1950–1962. Antonie Leeuwenhoek 29:183–201 [CrossRef]
    [Google Scholar]
  9. Cohen H. H., Leppink G. J. 1956; Selection of Haemophilus pertussis strains for vaccine production in the mouse protection test in a balanced design. J Immunol 77:299–304
    [Google Scholar]
  10. De Magistris M. T., Romano M., Bartoloni A., Rappuoli R., Tagliabue A. 1989; Human T cell clones define S1 subunit as the most immunogenic moiety of pertussis toxin and determine its epitope map. J Exp Med 169:1519–1532 [CrossRef]
    [Google Scholar]
  11. de Melker H. E., Conyn van Spaendonck M. A., Rumke H. C., van Wijngaarden J. K., Mooi F. R., Schellekens J. F. 1997; Pertussis in The Netherlands: an outbreak despite high levels of immunization with whole-cell vaccine. Emerg Infect Dis 3:175–178 [CrossRef]
    [Google Scholar]
  12. de Melker H. E., Schellekens J. F., Neppelenbroek S. E., Mooi F. R., Rumke H. C., Conyn-van Spaendonck M. A. 2000; Re-emergence of pertussis in the highly vaccinated population of The Netherlands: observations on surveillance data. Emerg Infect Dis 6:348–357 [CrossRef]
    [Google Scholar]
  13. De Serres G., Boulianne N., Douville Fradet M., Duval B. 1995; Pertussis in Quebec: ongoing epidemic since the late 1980s. Can Commun Dis Rep 21:45–48
    [Google Scholar]
  14. Eldering G., Holwerda J., Davis A., Baker J. 1969; Bordetella pertussis serotypes in the United States. Appl Microbiol 18:618–621
    [Google Scholar]
  15. Fry N. K., Neal S., Harrison T. G., Miller E., Matthews R., George R. C. 2001; Genotypic variation in the Bordetella pertussis virulence factors pertactin and pertussis toxin in historical and recent clinical isolates in the United Kingdom. Infect Immun 69:5520–5528 [CrossRef]
    [Google Scholar]
  16. Guris D., Strebel P. M., Bardenheier B., Brennan M., Tachdjian R., Finch E., Wharton M., Livengood J. R. 1999; Changing epidemiology of pertussis in the United States: increasing reported incidence among adolescents and adults, 1990–1996. Clin Infect Dis 28:1230–1237 [CrossRef]
    [Google Scholar]
  17. Gzyl A., Augustynowicz E., van Loo I., Slusarczyk J. 2001; Temporal nucleotide changes in pertactin and pertussis toxin genes in Bordetella pertussis strains isolated from clinical cases in Poland. Vaccine 20:299–303 [CrossRef]
    [Google Scholar]
  18. Hausman S. Z., Burns D. L. 2000; Use of pertussis toxin encoded by ptx genes from Bordetella bronchiseptica to model the effects of antigenic drift of pertussis toxin on antibody neutralization. Infect Immun 68:3763–3767 [CrossRef]
    [Google Scholar]
  19. King A. J., Berbers G., van Oirschot H. F. L. M., Hoogerhout P., Knipping K., Mooi F. R. 2001; Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology 147:2885–2895
    [Google Scholar]
  20. Mastrantonio P., Spigaglia P., van Oirschot H., van der Heide H. G. J., Heuvelman C., Stefanelli P., Mooi F. R. 1999; Antigenic variants in Bordetella pertussis strains isolated from vaccinated and unvaccinated children. Microbiology 145:2069–2075 [CrossRef]
    [Google Scholar]
  21. Mooi F. R., van Oirschot H., Heuvelman C., van der Heide H. G. J., Gaastra W., Willems R. J. L. 1998; Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 66:670–675
    [Google Scholar]
  22. Mooi F. R., He Q., van Oirschot H., Mertsola J. 1999; Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect Immun 67:3133–3134
    [Google Scholar]
  23. Nei M., Tajima F. 1981; DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163
    [Google Scholar]
  24. Preston N. W. 1976; Prevalent serotypes of Bordetella pertussis in non-vaccinated communities. J Hyg 77:85–91 [CrossRef]
    [Google Scholar]
  25. Preston N. W., Carter E. J. 1992; Serotype specificity of vaccine-induced immunity to pertussis. Commun Dis Rep CDR Rev 2:R155–R156
    [Google Scholar]
  26. Robinson A., Gorringe A. R., Funnell S. G. P., Fernandez M. 1989; Stereospecific protection in mice against intranasal infection with Bordetella pertussis . Vaccine 7:321–324 [CrossRef]
    [Google Scholar]
  27. Scarselli M., Esposito G., De Magistris M. T., Domenighini M., Rappuoli R., Burroni G., Bernini A., Niccolai N. 1998; NMR studies on the structure/function correlations of T-cell-epitope analogs from pertussis toxin. Eur J Biochem 254:313–317 [CrossRef]
    [Google Scholar]
  28. Senzilet L. D., Halperin S. A., Spika J. S., Alagaratnam M., Morris A., Smith B. 2001; Pertussis is a frequent cause of prolonged cough illness in adults and adolescents. Clin Infect Dis 32:1691–1697 [CrossRef]
    [Google Scholar]
  29. Strebel P., Nordin J., Edwards K., Hunt J., Besser J., Burns S., Amundson G., Baughman A., Wattigney W. 2001; Population-based incidence of pertussis among adolescents and adults. Minnesota: 1995–1996 J Infect Dis 183:1353–1359 [CrossRef]
    [Google Scholar]
  30. van Loo I. H., van der Heide H. G., Nagelkerke N. J., Verhoef J., Mooi F. R. 1999; Temporal trends in the population structure of Bordetella pertussis during 1949–1996 in a highly vaccinated population. J Infect Dis 179:915–923 [CrossRef]
    [Google Scholar]
  31. van Loo I. H. M, Heuvelman C. J., King A. J., Mooi F. R. 2002; Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J. Clin Microbiol 40:1994–2001 [CrossRef]
    [Google Scholar]
  32. Weber C., Boursaux-Eude C., Coralie G., Caro V., Guiso N. 2001; Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. J Clin Microbiol 39:4396–4403 [CrossRef]
    [Google Scholar]
  33. Willems R., Paul A., van der Heide H. G., ter Avest A. R., Mooi F. R. 1990; Fimbrial phase variation in Bordetella pertussis : a novel mechanism for transcriptional regulation. EMBO J 9:2803–2809
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2011
Loading
/content/journal/micro/10.1099/00221287-148-7-2011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error