1887

Abstract

The HpmA haemolysin toxin of is encoded by the locus and its production is upregulated co-ordinately with the synthesis and assembly of flagella during differentiation into hyperflagellated swarm cells. Primer extension identified a σ promoter upstream of that was upregulated during swarming. Northern blotting indicated that this promoter region was also required for concomitant transcription of the immediately distal gene, and that the unstable transcript generated a stable mRNA and an unstable mRNA. Transcriptional fusions to the DNA regions 5′ of the and genes confirmed that σ promoter activity increased in swarm cells, and that there was no independent promoter. Increased transcription of the operon in swarm cells was dependent upon a 125 bp sequence 5′ of the σ promoter −35 hexamer. This sequence spans multiple putative binding sites for the leucine-responsive regulatory protein (Lrp), and band-shift assays with purified Lrp confirmed the presence of at least two such sites. The influence on expression of the key swarming positive regulators FlhDC (encoded by the flagellar master operon), Lrp, and the membrane-located upregulator of the master operon, UmoB, was examined. Overexpression of each of these regulators moderately increased transcription in wild-type , and the operon was not expressed in any of the , or mutants. Expression in the mutants was not recovered by cross-complementation, i.e. by overexpression of FlhDC, Lrp or UmoB. Expression of the protease virulence gene, which like is also upregulated in swarm cells, did not require Lrp, but like it was upregulated by UmoB. The results indicate intersecting pathways of control linking virulence gene expression and swarm cell differentiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-7-2191
2002-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/7/1482191a.html?itemId=/content/journal/micro/10.1099/00221287-148-7-2191&mimeType=html&fmt=ahah

References

  1. Akiyama M., Horiuchi T., Sekiguchi M. 1987; Molecular cloning and nucleotide sequence of the mutT mutator of Escherichia coli that causes A: T to C:G transversion. Mol Gen Genet 206:9–16 [CrossRef]
    [Google Scholar]
  2. Allison C., Hughes C. 1991; Closely linked genetic loci required for swarm cell differentiation and multicellular migration by Proteus mirabilis . Mol Microbiol 5:1975–1982 [CrossRef]
    [Google Scholar]
  3. Allison C., Lai H.-C., Hughes C. 1992; Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis . Mol Microbiol 6:1583–1591 [CrossRef]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. 1990; Basic logical alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl L. 1988 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Cam K., Rome G., Krisch H. M., Bouche J. P. 1996; RNase E processing of essential cell division genes mRNA in Escherichia coli . Nucleic Acids Res 24:3065–3070 [CrossRef]
    [Google Scholar]
  7. Claret L., Hughes C. 2000a; Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J Bacteriol 182:833–836 [CrossRef]
    [Google Scholar]
  8. Claret L., Hughes C. 2000b; Functions of the subunits in the FlhD2C2 transcriptional master regulator of bacterial flagellum biogenesis and swarming. J Mol Biol 303:467–478 [CrossRef]
    [Google Scholar]
  9. Cui Y., Wang Q., Stormo G. D., Calvo J. M. 1995; A consensus sequence for binding of Lrp to DNA. J Bacteriol 177:4872–4880
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  11. Dufour A., Furness R. B., Hughes C. 1998; Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol Microbiol 29:741–751 [CrossRef]
    [Google Scholar]
  12. Feinberg A. P., Vogelstein B. 1984; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13
    [Google Scholar]
  13. Fellay R., Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene 52:147–154 [CrossRef]
    [Google Scholar]
  14. Fraser G. M., Hughes C. 1999; Swarming motility. Curr Opin Microbiol 2:630–635 [CrossRef]
    [Google Scholar]
  15. Fraser G. M., Furness R. B., Hughes C. 2000; Swarming migration by Proteus and related bacteria. In Prokaryotic Development pp 381–401 Edited by Brun Y. V., Shimkets L. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Furness R. B., Fraser G. M., Hay N. A., Hughes C. 1997; Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol 179:5585–5588
    [Google Scholar]
  17. Gazeau M., Delort F., Fromant M., Dessen P., Blanquet S., Plateau P. 1994; Structure-function relationship of the Lrp-binding region upstream of lysU in Escherichia coli . J Mol Biol 241:378–389 [CrossRef]
    [Google Scholar]
  18. Givskov M., Eberl L., Christiansen G., Bendik M. J., Molin S. 1995; Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the master operon flhD . Mol Microbiol 15:445–454 [CrossRef]
    [Google Scholar]
  19. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  20. Gygi D., Bailey M. J., Allison C., Hughes C. 1995; Requirement for FlhA in flagella assembly and swarm cell differentiation by Proteus mirabilis . Mol Microbiol 15:761–769
    [Google Scholar]
  21. Gygi D., Fraser G., Dufour A., Hughes C. 1997; A motile but non-swarming mutant of Proteus mirabilis lacks FlgN, a facilitator of flagella filament assembly. Mol Microbiol 25:597–604 [CrossRef]
    [Google Scholar]
  22. Hay N. A., Tipper D. J., Gygi D., Hughes C. 1997; A non-swarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J Bacteriol 179:4741–4746
    [Google Scholar]
  23. Helmann J. D. 1991; Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol 5:2875–2882 [CrossRef]
    [Google Scholar]
  24. Helmann J. D., Chamberlin M. J. 1987; DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. Proc Natl Acad Sci USA 84:6422–6444 [CrossRef]
    [Google Scholar]
  25. Ide N., Ikebe T., Kutsukake K. 1999; Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella . Genes Genet Syst 74:113–116 [CrossRef]
    [Google Scholar]
  26. Iyoda S., Kamidoi T., Hirose K., Kutsukake K., Watanabe H. 2001; A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium . Microb Pathog 30:81–90 [CrossRef]
    [Google Scholar]
  27. Kamath A. V., Yanofsky C. 1993; Sequence and characterisation of mutT from Proteus vulgaris . Gene 134:99–102 [CrossRef]
    [Google Scholar]
  28. Klug G. 1993; The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Mol Microbiol 9:1–7 [CrossRef]
    [Google Scholar]
  29. Konninger U. W., Hobbie S., Benz R., Braun V. 1999; The haemolysin-secreting ShlB protein of the outer membrane of Serratia marcescens : determination of surface-exposed residues and formation of ion-permeable pores by ShlB mutants in artificial lipid bilayer membranes. Mol Microbiol 32:1212–1225 [CrossRef]
    [Google Scholar]
  30. Koronakis V., Hughes C. 1988; Identification of the promoters directing in vivo expression of haemolysin in Proteus vulgaris and Escherichia coli . Mol Gen Genet 213:99–104 [CrossRef]
    [Google Scholar]
  31. Lucas R. L., Lostroh C. P., DiRusso C. C., Spector M. P., Wanner B. L., Lee C. A. 2000; Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium . J Bacteriol 182:1872–1882 [CrossRef]
    [Google Scholar]
  32. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  33. Mobley H. L. T., Island D., Hausinger R. P. 1995; Molecular biology of microbial ureases. Microbiol Rev 59:451–480
    [Google Scholar]
  34. Newbury S. F., Smith N. H., Higgins C. F. 1987; Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51:1131–1143 [CrossRef]
    [Google Scholar]
  35. Rhee K. Y., Parekh B. S., Hatfield G. W. 1996; Leucine-responsive regulatory protein-DNA interactions in the leader region of the ilvGMEDA operon of Escherichia coli . J Biol Chem 271:26499–26507 [CrossRef]
    [Google Scholar]
  36. Ronald S. L., Kropinski A. M., Farinha M. A. 1990; Construction of broad-host-range vectors for the selection of divergent promoters. Gene 90:145–148 [CrossRef]
    [Google Scholar]
  37. Rozalski A., Sidorczyk Z., Kotelko K. 1997; Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61:65–89
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5465 [CrossRef]
    [Google Scholar]
  40. Schmiel D. H., Young G. M., Miller V. L. 2000; The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 182:2314–2320 [CrossRef]
    [Google Scholar]
  41. Senior B. W., Hughes C. 1987; Production and properties of haemolysins from clinical isolates of the Proteae . J Med Microbiol 24:17–25
    [Google Scholar]
  42. Stern M. J., Prossnitz E., Ames G. F. 1988; Role of the intercistronic region in post-transcriptional control of gene expression in the histidine operon of Salmonella typhimurium : involvement of REP sequences. Mol Microbiol 2:141–152 [CrossRef]
    [Google Scholar]
  43. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 DNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [CrossRef]
    [Google Scholar]
  44. Swihart K. G., Welch R. A. 1990; Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun 58:1861–1869
    [Google Scholar]
  45. Uphoff T. S., Welch R. A. 1990; Nucleotide sequencing of the Proteus mirabilis calcium-independent haemolysin genes ( hpmA and hpmB) reveals sequence similarity with Serratia marcescens haemolysin genes ( shlA and shlB) . J Bacteriol 172:1206–1216
    [Google Scholar]
  46. Walker K. E., Moghaddame-Jafari S., Lockatell C. V., Johnson D., Belas R. 1999; ZapA, the IgA-degrading metalloprotease of Proteus mirabilis , is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32:825–836 [CrossRef]
    [Google Scholar]
  47. Wassif C., Cheek D., Belas R. 1995; Molecular analysis of metalloprotease from Proteus mirabilis . J Bacteriol 177:5790–5798
    [Google Scholar]
  48. Welch R. A. 1987; Identification of two different hemolysin determinants in uropathogenic Proteus isolates. Infect Immun 55:2183–2190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-7-2191
Loading
/content/journal/micro/10.1099/00221287-148-7-2191
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error