1887

Abstract

is an opportunistic fungal pathogen with a defined sexual cycle for which genetic and molecular techniques are well developed. The entire genome sequence of one strain is nearing completion. The efficient use of this sequence is dependent upon the development of methods to perform more rapid genetic analysis including gene-disruption techniques. A modified PCR overlap technique to generate targeting constructs for gene disruption that contain large regions of gene homology is described. This technique was used to disrupt or delete more than a dozen genes with efficiencies comparable to those previously reported using cloning technology to generate targeting constructs. Moreover, it is shown that disruptions can be made using this technique in a variety of strain backgrounds, including the pathogenic serotype A isolate H99 and recently characterized stable diploid strains. In combination with the availability of the complete genomic sequence, this gene-disruption technique should pave the way for higher throughput genetic analysis of this important pathogenic fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2607
2002-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482607a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2607&mimeType=html&fmt=ahah

References

  1. Alspaugh J. A., Perfect J. R., Heitman J. 1997; Cryptococcus neoformans mating and virulence are regulated by the G-protein α subunit GPA1 and cAMP. Genes Dev 11:3206–3217 [CrossRef]
    [Google Scholar]
  2. Alspaugh J. A., Cavallo L. M., Perfect J. R., Heitman J. 2000a; RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans . Mol Microbiol 36:352–365 [CrossRef]
    [Google Scholar]
  3. Alspaugh J. A., Davidson R. C., Heitman J. 2000b; Morphogenesis of Cryptococcus neoformans . In Dimorphism in Human Pathogenic and Apathogenic Yeasts pp 217–238 Edited by Ernst J. F., Schmidt A. Basel: Karger;
    [Google Scholar]
  4. Baudin A., Ozier-Kalogeropoulos O., Denouel A., Lacroute F., Cullin C. 1993; A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae . Nucleic Acids Res 21:3329–3330 [CrossRef]
    [Google Scholar]
  5. Casadevall A., Perfect J. R. 1998 Cryptococcus neoformans Washington: ASM Press;
    [Google Scholar]
  6. Chen S. C., Wright L. C., Golding J. C., Sorrell T. C. 2000; Purification and characterization of secretory phospholipase B, lysophospholipase and lysophospholipase/transacylase from a virulent strain of the pathogenic fungus Cryptococcus neoformans . Biochem J 347:431–439 [CrossRef]
    [Google Scholar]
  7. Clarke D. L., Woodlee G. L., McClelland C. M., Seymour T. S., Wickes B. L. 2001; The Cryptococcus neoformans STE11 α gene is similar to other fungal mitogen-activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific. Mol Microbiol 40:200–213 [CrossRef]
    [Google Scholar]
  8. Cox G. M., Mukherjee J., Cole G. T., Casadevall A., Perfect J. R. 2000; Urease as a virulence factor in experimental cryptococcosis. Infect Immun 68:443–448 [CrossRef]
    [Google Scholar]
  9. Cox G. M., McDade H. C., Chen S. C. A. 8 other authors 2001; Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans . Mol Microbiol 39:166–175 [CrossRef]
    [Google Scholar]
  10. Cruz M. C., Cavallo L. M., Görlach J. M., Cox G., Perfect J. R., Cardenas M. E., Heitman J. 1999; Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans . Mol Cell Biol 19:4101–4112
    [Google Scholar]
  11. Cruz M. C., Sia R. A. L., Olson M., Cox G. M., Heitman J. 2000; Comparison of the roles of calcineurin in physiology and virulence in serotype D and serotype A strains of Cryptococcus neoformans . Infect Immun 68:982–985 [CrossRef]
    [Google Scholar]
  12. Davidson R. C., Cruz M. C., Sia R. A. L., Allen B. M., Alspaugh J. A., Heitman J. 2000; Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans . Fungal Genet Biol 29:38–48 [CrossRef]
    [Google Scholar]
  13. Eberhardt I., Hohmann S. 1995; Strategy for deletion of complete open reading frames in Saccharomyces cerevisiae . Curr Genet 27:306–308 [CrossRef]
    [Google Scholar]
  14. Edman J. C., Kwon-Chung K. J. 1990; Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol 10:4538–4544
    [Google Scholar]
  15. Fox D. S., Cruz M. C., Sia R. A. L., Ke H., Cox G. M., Cardenas M. E., Heitman J. 2001; Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans . Mol Microbiol 39:835–849 [CrossRef]
    [Google Scholar]
  16. Goldman D., Lee S. C., Casadevall A. 1994; Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect Immun 62:4755–4761
    [Google Scholar]
  17. Gorlach J. M., McDade H. C., Perfect J. R., Cox G. M. 2002; Antisense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy. Microbiology 148:213–219
    [Google Scholar]
  18. Heitman J., Casadevall A., Lodge J. K., Perfect J. R. 1999; The Cryptococcus neoformans genome sequencing project. Mycopathologia 148:1–7 [CrossRef]
    [Google Scholar]
  19. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  20. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68 [CrossRef]
    [Google Scholar]
  21. Hua J., Meyer J. D., Lodge J. K. 2000; Development of positive selectable markers for the fungal pathogen Cryptococcus neoformans . Clin Diagn Lab Immunol 7:125–128
    [Google Scholar]
  22. Kwon-Chung K. J. 1975; A new genus, Filobasidiella , the perfect state of Cryptococcus neoformans . Mycologia 67:1197–1200 [CrossRef]
    [Google Scholar]
  23. Kwon-Chung K. J. 1976; Morphogenesis of Filobasidiella neoformans , the sexual state of Cryptococcus neoformans . Mycologia 68:821–833 [CrossRef]
    [Google Scholar]
  24. Kwon-Chung K. J., Bennett J. E. 1992; Cryptococcosis. In Medical Mycology pp 397–446 Malvern, PA: Lea & Febiger;
    [Google Scholar]
  25. Kwon-Chung K. J., Polacheck I., Popkin T. J. 1982; Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol 150:1414–1421
    [Google Scholar]
  26. Liu H., Cottrell T. R., Pierini L. M., Goldman W. E., Doering T. L. 2002; RNA interference in the pathogenic fungus Cryptococcus neoformans . Genetics 160:463–470
    [Google Scholar]
  27. Lorenz M. C., Muir R. S., Lim E., McElver J., Weber S. C., Heitman J. 1995; Gene disruption with PCR products in Saccharomyces cerevisiae . Gene 158:113–117 [CrossRef]
    [Google Scholar]
  28. McDade H. C., Cox G. M. 2001; A new dominant selectable marker for use in Cryptococcus neoformans . Med Mycol 39:151–154 [CrossRef]
    [Google Scholar]
  29. Mitchell T. G., Perfect J. R. 1995; Cryptococcosis in the era of AIDS – 100 years after the discovery of Cryptococcus neoformans . Clin Microbiol Rev 8:515–548
    [Google Scholar]
  30. Moore T. D. E., Edman J. C. 1993; The α-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13:1962–1970
    [Google Scholar]
  31. Nelson R. T., Hua J., Pryor B., Lodge J. K. 2001; Identification of virulence mutants of the fungal pathogen Cryptococcus neoformans using signature-tagged mutagenesis. Genetics 157:935–947
    [Google Scholar]
  32. Nelson R. T., Pryor B. A., Lodge J. K. 2002; Sequence length required for homologous recombination in Cryptococcus neoformans . Fungal Genet Biol in press
    [Google Scholar]
  33. Odom A., Muir S., Lim E., Toffaletti D. L., Perfect J., Heitman J. 1997; Calcineurin is required for virulence of Cryptococcus neoformans . EMBO J 16:2576–2589 [CrossRef]
    [Google Scholar]
  34. Perfect J. R., Lang S. D. R., Durack D. T. 1980; Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 101:177–194
    [Google Scholar]
  35. Pitkin J. W., Panaccione D. G., Walton J. D. 1996; A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum . Microbiology 142:1557–1565 [CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sanfelice F. 1894; Contributo alla morfologia e biologia dei blastomiceti che si sviluppano nei succhi di alcuni frutti. Ann Igien 4:463–495
    [Google Scholar]
  38. Sherman F. 1991; Getting started with yeast. Methods Enzymol 194:3–21
    [Google Scholar]
  39. Sia R. A., Lengeler K. B., Heitman J. 2000; Diploid strains of the pathogenic basidiomycete Cryptococcus neoformans are thermally dimorphic. Fungal Genet Biol 29:153–163 [CrossRef]
    [Google Scholar]
  40. Sudarshan S., Davidson R. C., Heitman J., Alspaugh J. A. 1999; Molecular analysis of the Cryptococcus neoformans ADE2 gene, a selectable marker for transformation and gene disruption. Fungal Genet Biol 27:36–48 [CrossRef]
    [Google Scholar]
  41. Toffaletti D. L., Perfect J. R. 1994; Biolistic DNA delivery for Cryptococcus neoformans transformation. In Molecular Biology of Pathogenic Fungi: a Laboratory Manual pp 303–308 Edited by Maresca B., Kobayashi G. S. New York: Telos Press;
    [Google Scholar]
  42. Toffaletti D. L., Rude T. H., Johnston S. A., Durack D. T., Perfect J. R. 1993; Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175:1405–1411
    [Google Scholar]
  43. Tong A. H. Y., Evangelista M., Parsons A. B. 10 other authors 2001; Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368 [CrossRef]
    [Google Scholar]
  44. Wach A. 1996; PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae . Yeast 12:259–265 [CrossRef]
    [Google Scholar]
  45. Wach A., Brachat A., Pohlmann R., Philippsen P. 1994; New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae . Yeast 10:1793–1808 [CrossRef]
    [Google Scholar]
  46. Wang P., Perfect J. R., Heitman J. 2000; The G-protein β subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans . Mol Cell Biol 20:352–362 [CrossRef]
    [Google Scholar]
  47. Wilson R. B., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2607
Loading
/content/journal/micro/10.1099/00221287-148-8-2607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error