1887

Abstract

Proteomics is a powerful tool for analysing differences in gene expression between bacterial strains with alternate phenotypes. strains are grouped on the basis of their sensitivity to methicillin. Two-dimensional gel electrophoresis was combined with MS to compare the protein profiles of strains COL (methicillin-resistant) and 8325 (methicillin-sensitive). Reference mapping via this approach identified 377 proteins that corresponded to 266 distinct ORFs. Amongst these identified proteins were 14 potential virulence factors. The production of 41 ‘hypothetical’ proteins was confirmed, and eight of these appeared to be unique to . Strain COL displayed 12 protein spots, which included alkaline-shock protein 23 (Asp23) and cold-shock proteins CspABC, which either were not present in strain 8325 or were present at a significantly lower intensity in this strain. Comparative maps were used to characterize the response to treatment with Triton X-100 (TX-100), a detergent that has been shown to reduce methicillin resistance independently of an interaction with the -encoded penicillin-binding protein 2a. In response to growth of the bacteria in the presence of TX-100, 44 protein spots showed altered levels of abundance, and 11 of these spots were found only in COL. The products of genes regulated by σ (the alternative sigma factor), including Asp23 and three proteins of unknown function, and SarA (a regulator of virulence genes) were shown to be present at significantly altered levels. SarA production was induced in TX-100-treated cultures. A protein of the σ operon, RsbV, was only detected in COL and its production was down-regulated in COL when the strain was treated with TX-100, whereas RsbW was present at reduced levels in both strains. Upon growth of both strains in the presence of TX-100, no effects on the production of the essential methicillin-resistance factor FemA were detected, whereas phosphoglucosamine mutase (GlmM) production was reduced in COL alone. This study suggests that proteins of the σ and regulons, as well as other factors, are involved in methicillin resistance in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2765
2002-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482765a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2765&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Becker L. A., Evans S. N., Hutkins R. W., Benson A. K. 2000; Role of σB in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol 182:7083–7087 [CrossRef]
    [Google Scholar]
  3. Benson A. K., Haldenwang W. G. 1993; Bacillus subtilis σB is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci USA 90:2330–2334 [CrossRef]
    [Google Scholar]
  4. Berger-Bächi B., Barberis-Maino L., Strässle A., Kayser F. H. 1989; FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus : molecular cloning and characterization. Mol Gen Genet 219:263–269
    [Google Scholar]
  5. Berger-Bächi B., Strassle A., Gustafson J. E., Kayser F. H. 1992; Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus . Antimicrob Agents Chemother 36:1367–1373 [CrossRef]
    [Google Scholar]
  6. Bischoff M., Entenza J. M., Giachino P. 2001; Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus . J Bacteriol 183:5171–5179 [CrossRef]
    [Google Scholar]
  7. Chan P. F., Foster S. J. 1998; Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus . J Bacteriol 180:6232–6241
    [Google Scholar]
  8. Cheung A. L., Koomey J. M., Butler C. A., Projan S. J., Fischetti V. A. 1992; Regulation of exoprotein expression in Staphylococcus aureus by a locus ( sar ) distinct from agr . Proc Natl Acad Sci USA 89:6462–6466 [CrossRef]
    [Google Scholar]
  9. Cheung A. L., Eberhardt K., Heinrichs J. H. 1997; Regulation of protein A synthesis by the sar and agr loci of Staphylococcus aureus . Infect Immun 65:2243–2249
    [Google Scholar]
  10. Cheung A. L., Chien Y. T., Bayer A. S. 1999; Hyperproduction of α-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus . Infect Immun 67:1331–1337
    [Google Scholar]
  11. Cordwell S. J., Nouwens A. S., Verrills N. M., Basseal D. J., Walsh B. J. 2000; Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels. Electrophoresis 21:1094–1103 [CrossRef]
    [Google Scholar]
  12. Cordwell S. J., Nouwens A. S., Walsh B. J. 2001; Comparative proteomics of bacterial pathogens. Proteomics 1:461–472 [CrossRef]
    [Google Scholar]
  13. de Jonge B. L. M., Chang Y.-S., Gage D., Tomasz A. 1992; Peptidoglycan composition in heterogeneous Tn 551 mutants of a methicillin-resistant Staphylococcus aureus strain. J Biol Chem 267:11255–11259
    [Google Scholar]
  14. De Lencastre H., Wu S., Pinho M. G. 7 other authors 1999; Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist 5:163–175 [CrossRef]
    [Google Scholar]
  15. Deora R., Tseng T., Misra T. K. 1997; Alternative transcription factor σSB of Staphylococcus aureus : characterization and role in transcription of the global regulatory locus sar . J Bacteriol 179:6355–6359
    [Google Scholar]
  16. Dufour A., Haldenwang W. G. 1994; Interactions between a Bacillus subtilis anti-σ factor (RsbW) and its antagonist (RsbV. J Bacteriol 176:1813–1820
    [Google Scholar]
  17. Dunman P. M., Murphy E., Haney S. 7 other authors 2001; Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353 [CrossRef]
    [Google Scholar]
  18. Fontana R. 1985; Penicillin-binding proteins and the intrinsic resistance to β-lactams in Gram-positive cocci. J Antimicrob Chemother 16:412–416 [CrossRef]
    [Google Scholar]
  19. Fujimoto D. F., Bayles K. W. 1998; Opposing roles of the Staphylococcus aureus virulence regulators, Agr and Sar, in Triton X-100- and penicillin-induced autolysis. J Bacteriol 180:3724–3726
    [Google Scholar]
  20. Fujimura T., Murakami K. 1997; Increase of methicillin resistance in Staphylococcus aureus caused by deletion of a gene whose product is homologous to lytic enzymes. J Bacteriol 179:6294–6301
    [Google Scholar]
  21. Gertz S., Englemann S., Schmid R., Ohlsen K., Hacker J., Hecker M. 1999; Regulation of σB-dependent transcription of sigB and asp23 in two different Staphylococcus aureus strains. Mol Gen Genet 261:558–566 [CrossRef]
    [Google Scholar]
  22. Gertz S., Engelmann S., Schmid R., Ziebrandt A.-K., Tischer K., Scharf C., Hacker J., Hecker M. 2000; Characterization of the σB regulon in Staphylococcus aureus . J Bacteriol 182:6983–6991 [CrossRef]
    [Google Scholar]
  23. Giachino P., Engelmann S., Bischoff M. 2001; σB activity depends on RsbU in Staphylococcus aureus . J Bacteriol 183:1843–1852 [CrossRef]
    [Google Scholar]
  24. Glanzmann P., Gustafson J., Komatsuzawa H., Ohta K., Berger-Bächi B. 1999; glmM operon and methicillin-resistant glmM suppressor mutants in Staphylococcus aureus . Antimicrob Agents Chemother 43:240–245
    [Google Scholar]
  25. Gobom J., Nordhoff E., Mirgorodskaya E., Ekman R., Roepstorff P. 1999; Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34:105–116 [CrossRef]
    [Google Scholar]
  26. Groicher K. H., Firek B. A., Fujimoto D. F., Bayles K. W. 2000; The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol 182:1794–1801 [CrossRef]
    [Google Scholar]
  27. Hecker M., Engelmann S. 2000; Proteomics, DNA arrays and the analysis of still unknown regulons and unknown proteins of Bacillus subtilis and pathogenic Gram-positive bacteria. Int J Med Microbiol 290:123–134 [CrossRef]
    [Google Scholar]
  28. Hecker M., Völker U. 2001; General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91
    [Google Scholar]
  29. Hecker M., Schumann W., Völker U. 1996; Heat-shock and general stress response in Bacillus subtilis . Mol Microbiol 19:417–428 [CrossRef]
    [Google Scholar]
  30. Heinrichs J. H., Bayer M. G., Cheung A. L. 1996; Characterization of the sar locus and its interaction with agr in Staphylococcus aureus . J Bacteriol 178:418–423
    [Google Scholar]
  31. Henze U., Sidow T., Wecke J., Labischinski H., Berger-Bächi B. 1993; Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus . J Bacteriol 175:1612–1620
    [Google Scholar]
  32. Hiramatsu K., Cui L., Kuroda M., Ito T. 2001; The emergence and evolution of methicillin-resistant Staphylococcus aureus . Trends Microbiol 9:486–493 [CrossRef]
    [Google Scholar]
  33. Höltje J. V., Tomasz A. 1975; Biological effects of lipoteichoic acids. J Bacteriol 124:1023–1027
    [Google Scholar]
  34. Jensen O. N., Larsen M. R., Roepstorff P. 1998; Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: strategies and applications. Proteins Suppl 2:74–89
    [Google Scholar]
  35. Jolly L., Wu S., Van Heijenoort J., De Lencastre H., Mengin-Lecreulx D., Tomasz A. 1997; The femR315 gene from Staphylococcus aureus , the interruption of which results in reduced methicillin resistance, encodes a phosphoglucosamine mutase. J Bacteriol 179:5321–5325
    [Google Scholar]
  36. Jungblut P. R., Schaible U. E., Mollenkopf H. J. 7 other authors 1999; Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117
    [Google Scholar]
  37. Jungblut P. R., Bumann D., Haas G., Zimny-Arndt U., Holland P., Lamer S., Siejak F., Aebischer A., Meyer T. F. 2000; Comparative proteome analysis of Helicobacter pylori . Mol Microbiol 36:710–725
    [Google Scholar]
  38. Karlsson A., Saravia-Otten P., Tegmark K., Morfeldt E., Arvidson S. 2001; Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases. Infect Immun 69:4742–4748 [CrossRef]
    [Google Scholar]
  39. Komatsuzawa H., Suzuki J., Sugai M., Miyake Y., Suginaka H. 1994; The effect of Triton X-100 on the in vitro susceptibility of methicillin-resistant Staphylococcus aureus to oxacillin. J Antimicrob Chemother 34:885–897 [CrossRef]
    [Google Scholar]
  40. Komatsuzawa H., Sugai M., Shirai C., Suzuki J., Hiramatsu K., Suginaka H. 1995; Triton X-100 alters the resistance level of methicillin-resistant Staphylococcus aureus to oxacillin. FEMS Microbiol Lett 134:209–212 [CrossRef]
    [Google Scholar]
  41. Komatsuzawa H., Sugai M., Ohta K., Fujiwara T., Nakashima S., Suzuki J., Lee C. Y., Suginaka H. 1997; Cloning and characterization of the fmt gene which affects the methicillin resistance level and autolysis in the presence of Triton X-100 in methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 41:2355–2361
    [Google Scholar]
  42. Komatsuzawa H., Ohta K., Sugai M., Fujiwara T., Glanzmann P., Berger-Bächi B., Suginaka H. 2000; Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus . J Antimicrob Chemother 45:421–431 [CrossRef]
    [Google Scholar]
  43. Kullik I., Giachino P. 1997; The alternative sigma factor σB in Staphylococcus aureus : regulation of the sigB operon in response to growth phase and heat shock. Arch Microbiol 167:151–159 [CrossRef]
    [Google Scholar]
  44. Kullik I., Giachino P., Fuchs T. 1998; Deletion of the alternative sigma factor σB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J Bacteriol 180:4814–4820
    [Google Scholar]
  45. Kuroda M., Ohta T., Uchiyama I. 34 other authors 2001; Whole genome sequencing of methicillin-resistant Staphylococcus aureus . Lancet 357:1225–1240 [CrossRef]
    [Google Scholar]
  46. Lorenz U., Ohlsen K., Karch H., Hecker M., Thiede A., Hacker J. 2000; Human antibody response during sepsis against targets expressed by methicillin resistant Staphylococcus aureus . FEMS Immunol Med Microbiol 29:145–153 [CrossRef]
    [Google Scholar]
  47. Maidhof H., Reinicke B., Blümel P., Berger-Bächi B. 1991; femA , which encodes a factor essential for methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J Bacteriol 173:3507–3513
    [Google Scholar]
  48. Maki H., Yamaguchi T., Murakami K. 1994; Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus . J Bacteriol 176:4993–5000
    [Google Scholar]
  49. Manna A., Cheung A. L. 2001; Characterization of sarR , a modulator of sar expression in Staphylococcus aureus . Infect Immun 69:885–896 [CrossRef]
    [Google Scholar]
  50. Manna A. C., Bayer M. G., Cheung A. L. 1998; Transcriptional analysis of different promoters in the sar locus in Staphylococcus aureus . J Bacteriol 180:3828–3836
    [Google Scholar]
  51. McNamara P. J., Milligan-Monroe K. C., Khalili S., Proctor R. A. 2000; Identification, cloning, and initial characterization of rot , a locus encoding a regulator of virulence factor expression in Staphylococcus aureus . J Bacteriol 182:3197–3203 [CrossRef]
    [Google Scholar]
  52. Morikawa K., Maruyama A., Inose Y., Higashide M., Hayashi H., Ohta T. 2001; Overexpression of sigma factor, σB, urges Staphylococcus aureus to thicken the cell wall and to resist β-lactams. Biochem Biophys Res Comm 288:385–389 [CrossRef]
    [Google Scholar]
  53. Novick R. P., Ross H. F., Projan S. J., Kornblum J., Kreiswirth B., Moghazeh S. 1993; Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975
    [Google Scholar]
  54. Ohta K., Komatsuzawa H., Sugai M., Suginaka H. 2000; Triton X-100-induced lipoteichoic acid release is correlated with the methicillin resistance in Staphylococcus aureus . FEMS Microbiol Lett 182:77–79 [CrossRef]
    [Google Scholar]
  55. Ornelas-Soares A., de Lencastre H., de Jonge B., Gage D., Chang Y.-S., Tomasz A. 1993; The peptidoglycan composition of a Staphylococcus aureus mutant selected for reduced methicillin resistance. J Biol Chem 268:26268–26272
    [Google Scholar]
  56. Palma M., Cheung A. L. 2001; σB activity in Staphylococcus aureus is controlled by RsbU and an additional factor(s) during bacterial growth. Infect Immun 69:7858–7865 [CrossRef]
    [Google Scholar]
  57. Petersohn A., Brigulla M., Haas S., Hoheisel J. D., Völker U., Hecker M. 2001; Global analysis of the general stress response of Bacillus subtilis . J Bacteriol 183:5617–5631 [CrossRef]
    [Google Scholar]
  58. Pı́riz-Durán S., Kayser F. H., Berger-Bächi B. 1996; Impact of sar and agr on methicillin resistance in Staphylococcus aureus . FEMS Microbiol Lett 141:255–260 [CrossRef]
    [Google Scholar]
  59. Price C. W., Fawcett P., Cérémonie H., Su N., Murphy C. K., Youngmann P. 2001; Genome-wide analysis of the general stress response in Bacillus subtilis . Mol Microbiol 41:757–774
    [Google Scholar]
  60. Projan S. J., Novick R. P. 1997; The molecular basis of pathogenicity. In The Staphylococci in Human Disease pp 55–81 Edited by Crossley K. B., Archer G. L. New York: Churchill Livingstone;
    [Google Scholar]
  61. Qoronfleh M. W., Gustafson J. E., Wilkinson B. J. 1998; Conditions that induce Staphylococcus aureus heat shock proteins also inhibit autolysis. FEMS Microbiol Lett 166:103–107 [CrossRef]
    [Google Scholar]
  62. Raychaudhuri D., Chatterjee A. N. 1985; Use of resistant mutants to study the interaction of Triton X-100 with Staphylococcus aureus . J Bacteriol 164:1337–1349
    [Google Scholar]
  63. Rechtin T. M., Gillaspy A. F., Schumacher M. A., Brennan R. G., Smeltzer M. S., Hurlburt B. K. 1999; Characterization of the SarA virulence gene regulator of Staphylococcus aureus . Mol Microbiol 33:307–316 [CrossRef]
    [Google Scholar]
  64. Reynolds P. E., Fuller C. 1986; Methicillin-resistant strains of Staphylococcus aureus : presence of an identical additional penicillin-binding protein in all strains examined. FEMS Microbiol Lett 33:251–254 [CrossRef]
    [Google Scholar]
  65. Riley M. 1993; Functions of the gene products of Escherichia coli . Microbiol Rev 57:862–952
    [Google Scholar]
  66. Suginaka H., Shimatani M., Ogawa M., Kotani S. 1979; Prevention of penicillin-induced lysis of Staphylococcus aureus by cellular lipoteichoic acid. J Antibiot 32:73–77 [CrossRef]
    [Google Scholar]
  67. Suzuki J., Komatsuzawa H., Sugai M., Ohta K., Kozai K., Nagasaka N., Suginaka H. 1997; Effects of various types of Triton X on the susceptibilities of methicillin-resistant staphylococci to oxacillin. FEMS Microbiol Lett 153:327–331 [CrossRef]
    [Google Scholar]
  68. Tenover F. C., Biddle J. W., Lancaster M. V. 2001; Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus . Emerg Infect Dis 7:327–332 [CrossRef]
    [Google Scholar]
  69. Völker U., Völker A., Maul B., Hecker M., Dufour A., Haldenwang W. G. 1995; Separate mechanisms activate σB of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol 177:3771–3780
    [Google Scholar]
  70. Waldvogel F. A. 1995; Staphylococcus aureus (including toxic shock syndrome). In Principles and Practice of Infectious Diseases pp 1754–1777 Edited by Mandell G. L., Bennett J. E., Dolin R. New York: Churchill Livingstone;
    [Google Scholar]
  71. Wu S., De Lencastre H. 1999; mrp – a new auxiliary gene essential for optimal expression of methicillin resistance in Staphylococcus aureus . Microb Drug Resist 5:9–18 [CrossRef]
    [Google Scholar]
  72. Wu S., De Lencastre H., Sali A., Tomasz A. 1996a; A phosphoglucomutase-like gene essential for the optimal expression of methicillin resistance in Staphylococcus aureus : molecular cloning and DNA sequencing. Microb Drug Resist 2:277–286 [CrossRef]
    [Google Scholar]
  73. Wu S., De Lencastre H., Tomasz A. 1996b; Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J Bacteriol 178:6036–6042
    [Google Scholar]
  74. Ziebandt A. K., Weber H., Rudolph J., Schmid R., Hoper D., Engelmann S., Hecker M. 2001; Extracellular proteins of Staphylococcus aureus and the role of SarA and σB . Proteomics 1:480–493 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2765
Loading
/content/journal/micro/10.1099/00221287-148-9-2765
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error