1887

Abstract

Type II methane-oxidizing bacteria (MOB) were isolated from diverse environments, including rice paddies, pristine and polluted freshwaters and sediments, mangrove roots, upland soils, brackish water ecosystems, moors, oil wells, water purification systems and livestock manure. Isolates were identified based on morphological traits as either spp., or . Molecular phylogenies were constructed based on nearly complete 16S rRNA gene sequences, and on partial sequences of genes encoding PmoA (a subunit of particulate methane monooxygenase), MxaF (a subunit of methanol dehydrogenase) and MmoX (a subunit of soluble methane monooxygenase). The maximum pairwise 16S rDNA difference between isolates was 42%, and considerable variability was evident within the (maximum difference 36%). Due to this variability, some of the published ‘specific’ oligonucleotide primers for type II MOB exhibit multiple mismatches with gene sequences from some isolates. The phylogenetic tree constructed from gene sequences closely mirrored that constructed from 16S rDNA sequences, and both supported the presently accepted taxonomy of type II MOB. Contrary to previously published phylogenetic trees, morphologically distinguishable species were generally monophyletic based on or 16S rRNA gene sequences. This was not true for phylogenies constructed from and gene sequences. The phylogeny of gene sequences suggested that horizontal transfer of this gene may have occurred across type II MOB species. Soluble methane monooxygenase could not be detected in many strains either by an enzyme activity test (oxidation of naphthalene) or by PCR-based amplification of an gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2831
2002-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482831a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2831&mimeType=html&fmt=ahah

References

  1. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef]
    [Google Scholar]
  2. Baker P. W., Futamata H., Harayama S., Watanabe K. 2001; Molecular diversity of pMMO and sMMO in a TCE-contaminated aquifer during bioremediation. FEMS Microbiol Ecol 38:161–167 [CrossRef]
    [Google Scholar]
  3. Bourne D. G., Holmes A. J., Iversen N., Murrell J. C. 2000; Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidising bacteria. FEMS Microbiol Ecol 31:29–38 [CrossRef]
    [Google Scholar]
  4. Bourne D. G., McDonald I. R., Murrell J. C. 2001; Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–3809 [CrossRef]
    [Google Scholar]
  5. Bowman J. 2000; The methanotrophs – the families Methylococcaceae and Methylocystaceae . In The Prokaryotes Edited by Dworkin M. New York: Springer;
    [Google Scholar]
  6. Bowman J., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  7. Brusseau G. A., Bulygina E. S., Hanson R. S. 1994; Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol 60:626–636
    [Google Scholar]
  8. Cho J. C., Tiedje J. M. 2000; Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456 [CrossRef]
    [Google Scholar]
  9. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074
    [Google Scholar]
  10. Dedysh S. N., Liesack W., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Bares A. M., Panikov N. S., Tiedje J. M. 2000; Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969 [CrossRef]
    [Google Scholar]
  11. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. 2002; Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261
    [Google Scholar]
  12. Dunfield P. F., Tchawa Yimga M., Dedysh S. N., Berger U., Liesack W., Heyer J. 2002; Isolation of a Methylocystis strain containing a novel pmoA -like gene copy. FEMS Microbiol Ecol 41:17–26 [CrossRef]
    [Google Scholar]
  13. Eller G., Stubner S., Frenzel P. 2001; Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridization. FEMS Microbiol Lett 198:91–97 [CrossRef]
    [Google Scholar]
  14. Fjellbirkeland A., Torsvik V., Øvreås L. 2001; Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA , mxaF and 16S rDNA sequences. Antonie Leeuwenhoek 79:209–217 [CrossRef]
    [Google Scholar]
  15. Galchenko V. F., Nesterov A. I., Andreev L. V., Trotsenko Y. A. 1980 New species of methanotrophic bacteria Methylocystis Pushchino: USSR Academy of Sciences;
    [Google Scholar]
  16. Graham D. W., Korich D. G., LeBlanc R. P., Sinclair N. P., Arnold R. G. 1992; Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58:231–2236
    [Google Scholar]
  17. Gulledge J., Ahmad A., Steudler P. A., Pomerantz W. J., Cavanaugh C. M. 2001; Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl Environ Microbiol 67:4726–4733 [CrossRef]
    [Google Scholar]
  18. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  19. Henckel T., Friedrich M., Conrad R. 1999; Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990
    [Google Scholar]
  20. Henckel T., Jäckel U., Schnell S., Conrad R. 2000a; Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol 66:1801–1808 [CrossRef]
    [Google Scholar]
  21. Henckel T., Roslev P., Conrad R. 2000b; Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2:666–679 [CrossRef]
    [Google Scholar]
  22. Heyer J., Malashenko Y., Berger U., Budkova E. 1984; Verbreitung methanotropher Bakterien. Z Allgemeine Mikrobiol 24:725–744 [CrossRef]
    [Google Scholar]
  23. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonium monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [CrossRef]
    [Google Scholar]
  24. Holmes A. J., Roslev P., McDonald I. R., Iversen N., Henriksen K., Murrell J. C. 1999; Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318
    [Google Scholar]
  25. Horz H. P., Tchawa Yimga M., Liesack W. 2001; Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA , mmoX , mxaF , and 16S rRNA and ribosomal DNA, including pmoA -based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67:4177–4185 [CrossRef]
    [Google Scholar]
  26. McDonald I. R., Murrell J. C. 1997a; The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156:205–210 [CrossRef]
    [Google Scholar]
  27. McDonald I. R., Murrell J. C. 1997b; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224
    [Google Scholar]
  28. McDonald I. R., Kenna E. M., Murrell J. C. 1995; Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121
    [Google Scholar]
  29. McDonald I. R., Hall G. H., Pickup R. W., Murrell J. C. 1996; Methane oxidation potential and preliminary analysis of methanotrophs in blanket peat bog using molecular ecology techniques. FEMS Microbiol Ecol 21:197–211 [CrossRef]
    [Google Scholar]
  30. Meyer J., Haubold R., Heyer J., Böckel W. 1986; Contribution to the taxonomy of methanotrophic bacteria: correlation between membrane type and GC-value. J Basic Microbiol 26:155–160 [CrossRef]
    [Google Scholar]
  31. Miguez C. B., Bourque D., Sealy J. A., Greer C. W., Groleau D. 1997; Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR. Microb Ecol 33:21–31 [CrossRef]
    [Google Scholar]
  32. Morris S. A., Radajewski S., Willison T. W., Murrell J. C. 2002; Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68:1446–1453 [CrossRef]
    [Google Scholar]
  33. Murrell J. C., Radajewski S. 2000; Cultivation-independent techniques for studying methanotroph ecology. Res Microbiol 151:807–814 [CrossRef]
    [Google Scholar]
  34. Purkhold U., Pommering-Röser A., Juretschko S., Schmid M. C., Koops H. P., Wagner M. 2001; Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382
    [Google Scholar]
  35. Radajewski S., Ineson P., Parekh N. R., Murrell J. C. 2000; Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649 [CrossRef]
    [Google Scholar]
  36. Reay D. S., Radajewski S., Murrell J. C., McNamara N., Nedwell D. B. 2001; Effects of land-use on the activity and diversity of methane-oxidizing bacteria in forest soils. Soil Biol Biochem 33:1613–1623 [CrossRef]
    [Google Scholar]
  37. Shigematsu T., Hanada S., Eguchi M., Kamagata Y., Kanagawa T., Kurane R. 1999; Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. Appl Environ Microbiol 65:5198–5206
    [Google Scholar]
  38. Steinkamp R., Zimmer W., Papen H. 2001; Improved method for detection of methanotrophic bacteria in forest soils by PCR. Curr Microbiol 42:316–322 [CrossRef]
    [Google Scholar]
  39. Strauss D. G., Berger U. 1983; Methylosin A und B, pigmente aus Methylosinus trichosporium . Z Allg Mikrobiol 23:661–668 [CrossRef]
    [Google Scholar]
  40. Strunk O., Ludwig W. 1996 ARB: a software environment for sequence data Munich: Technische Universität München;
    [Google Scholar]
  41. Swofford D. L., Olsen G. J., Wadell P. J., Hillis D. M. 1996; Phylogenetic inference. In Molecular Systematics pp 407–415 Edited by Hillis D. M., Moritz C., Mable B. K. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  42. Tsien H. C., Bratina B. J., Tsuji K., Hanson R. S. 1990; Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl Environ Microbiol 56:2858–2865
    [Google Scholar]
  43. Weisburg W., Barns G., Dale S. M., Pelletier A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 2:697–703
    [Google Scholar]
  44. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
  45. Wise M. G., McArthur J. V., Shimkets L. J. 1999; Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2831
Loading
/content/journal/micro/10.1099/00221287-148-9-2831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error