1887

Abstract

The phenotypic characteristics of four strains isolated from the rhizosphere and the clinical environment were compared. Tests included optimum growth temperature, utilization of carbon sources, production of HCN, indole-3-acetic acid (IAA) and siderophores, proteolytic activity, nitrogen fixation, inhibition of some phytopathogenic fungi, adherence to human mucosal and plant root epithelia, and greenhouse-based plant-growth promotion experiments using cucumber (). Results indicated that the strains of isolated from the rhizosphere differ markedly from their clinical counterparts. Strains isolated from the rhizosphere grew over a wider temperature range, fixed nitrogen and produced IAA, did not produce proteases, displayed a wider antibiosis against the phytopathogenic fungi studied, did not adhere to human uroepithelial cells, promoted growth of and only produced a hydroxamate-like siderophore. In contrast, clinical isolates could not fix nitrogen or produce IAA, produced proteases, adhered to human uroepithelial cells, did not promote the growth of and, in addition to a hydroxamate-like siderophore, produced pyochelin and salicylate siderophores. All four isolates exhibited the ability to adhere to the root tissue of and were unable to produce HCN.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-5-1069
1994-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/5/mic-140-5-1069.html?itemId=/content/journal/micro/10.1099/13500872-140-5-1069&mimeType=html&fmt=ahah

References

  1. Abdallah M.A. 1991; Pyoverdins and pseudobactins.. In CRC Handbook of Microbial Iron Chelates pp. 139–153 Edited by Winkelmann G. Boca Raton, Ann Arbor, Boston, London: CRC Press;
    [Google Scholar]
  2. Arnow L E. 1937; Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 228:531–537
    [Google Scholar]
  3. Burkholder W.H. 1950; Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117
    [Google Scholar]
  4. Carson L. A., Favero M. S., Bond W. W., Petersen N. J. 1973; Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl Microbiol 25:476–483
    [Google Scholar]
  5. Castric K.F., Castric P. A. 1983; Method for rapid detection of cyanogenic bacteria. Appl Environ Microbiol 45:701–702
    [Google Scholar]
  6. Cox C.D. 1989; Importance of iron in bacterial virulence.. In Metal Ions and Bacteria pp. 207–246 Edited by Beveridge T. J., Doyle R. J. New York: John Wiley and Sons;
    [Google Scholar]
  7. Cox C.D., Graham R. 1979; Isolation of an iron-binding compound from Pseudomonas aeruginosa.. J Bacteriol 137:357–364
    [Google Scholar]
  8. Craven E. E., Moody B., Connolly M. G., Kollisch N. R., Stottmeier K. D., McCabe W. R. 1981; Pseudobacteremia caused by povidone-iodine solution contaminated with Pseudomonas cepacia.. N Engl J Med 305:621–623
    [Google Scholar]
  9. Csaky T.Z. 1948; On the estimation of bound hydroxylamine in biological materials. Acta Chem Scand 2:450–454
    [Google Scholar]
  10. Davidson J. 1988; Plant beneficial bacteria. Biotechnology 6:282–286
    [Google Scholar]
  11. Ehmann A. 1977; The Van Urk-Salkowski reagent - a sensitive and specific chromogenic reagent for silica gel thin-layer chromato-graphic detection and identification of indole derivatives. J Chromatography 132:267–276
    [Google Scholar]
  12. Enyedi A. J., Yalpani N., Silverman P., Raskin I. 1992; Signal molecules in systemic plant resistance to pathogens and pests. Cell 70:879–886
    [Google Scholar]
  13. Feigl F., Anger V. 1966; Replacement of benzidine by copper ethylacetoacetate and tetrabase as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91:282–284
    [Google Scholar]
  14. Folsom B. R., Chapman P. J., Pritchard P. H. 1990; Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol 56:1279–1285
    [Google Scholar]
  15. Forni C., Riov J., Grilli Caiola M., Tel-Or E. 1992; Indole-3 acetic acid (IAA) production by Arthrobacter species isolated from Azolla.. J Gen Microbiol 138:377–381
    [Google Scholar]
  16. de Freitas J. R., Germida J. J. 1991; Pseudomonas cepacia and Pseudomonas putida as winter wheat inoculants for biocontrol of Khiyoctonia solani.. Can J Microbiol 37:780–784
    [Google Scholar]
  17. Gilardi G.L. 1971; Antimicrobial susceptibility as a diagnostic aid in the identification of nonfermenting Gram-negative bacteria. Appl Microbiol 22:821–823
    [Google Scholar]
  18. Gilardi G.L. 1983; Pseudomonas cepacia:, culture and laboratory identification. Eab Manage 21:29–32
    [Google Scholar]
  19. Goldmann D.A., Klinger J. D. 1986; Pseudomonas cepacia biology, mechanisms of virulence, epidemiology. J Pediatr 108:806–812
    [Google Scholar]
  20. Gonzalez C.F., Vidaver A. K. 1979; Bacteriocin, plasmid and pectolytic diversity in Pseudomonas cepacia of clinical and plant origin. J Gen Microbiol 110:161–170
    [Google Scholar]
  21. Guterman S.K. 1973; Colicin B: mode of action and inhibition by enterochelin. J Bacteriol 114:1217–1224
    [Google Scholar]
  22. Hardy R.W.F., Burns R. C., Holsten R. D. 1973; Application of the acetylene-ethylene assay for measurements of nitrogen fixation. Soil Biol Biochem 5:47–81
    [Google Scholar]
  23. Hebbar P., Berge O., Heulin T., Singh S. P. 1991; Bacterial antagonists of Sunflower (Helianthus annus L.) fungal pathogens. Plant Soil 133:131–140
    [Google Scholar]
  24. Hebbar K. P., Davey A. G., Dart P. J. 1992a; Rhizobacteria of maize antagonistic to Eusarium moniliforme, a soil-borne fungal pathogen: isolation and identification. Soil Biol Biochem 24:979–987
    [Google Scholar]
  25. Hebbar K. P., Davey A. G., Merrin J., Dart P. J. 1992b; Rhizobacteria of maize antagonistic to Eusarium moniliforme, soil- borne fungal pathogen: colonization of rhizosphere and roots. Soil Biol Biochem 24:989–997
    [Google Scholar]
  26. Hebbar K. P., Davey A. G., Merrin J., McLoughlin T. J., Dart P. J. 1992c; Pseudomonas cepacia, a potential suppressor of maize soil-borne diseases - seed inoculation and maize root colonization. Soil Biol Biochem 24:999–1007
    [Google Scholar]
  27. Homma Y., Chikuo Y., Ogoshi A. 1990; Mode of suppression of sugar beet damping-off caused by Rhizoctonia solani by seed bacterization with Pseudomonas cepacia.. In Plant Growth-Promoting Rhizobacteria - Progress and Prospects pp. 115–118 Edited by Keel C., Koller B., Defago G. . IOBC/WPRS Bulletin 1991 /XIV/8
    [Google Scholar]
  28. Isles A., Madusky I., Corey M., Gold R., Prober C., Fleming P., Levison H. 1984; Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210
    [Google Scholar]
  29. James D. W., Suslow T. V., Steinback K. E. 1985; Relationship between rapid, firm adhesion and long-term colonization of roots by bacteria. Appl Environ Microbiol 50:392–397
    [Google Scholar]
  30. Janda J.M., Bottone E. J. 1981; Pseudomonas aeruginosa enzyme profiling: prediction of potential invasiveness and use as an epidemiological tool. J Clin Microbiol 14:55–60
    [Google Scholar]
  31. Kilbane J. J., Chatterjee D. K., Chakrabarty A. M. 1983; Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil by Pseudomonas cepacia.. Appl Environ Microbiol 45:1697–1700
    [Google Scholar]
  32. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for demonstration of pyocyanin and fluorescein. I Lab Clin Med 44:301–307
    [Google Scholar]
  33. Kloepper J. W., Leong J., Tientze M., Schroth M. N. 1980; Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886
    [Google Scholar]
  34. Kloepper J. W., Lifshitz R., Schroth M. N. 1988; Pseudomonas inoculants to benefit plant production.. ISI Atlas of Science: Animal and Plant Sciences pp. 60–64 Philadelphia: Institute for Public Information;
    [Google Scholar]
  35. Kloepper J. W., Lifshitz R., Zablotowicz R. M. 1989; Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44
    [Google Scholar]
  36. Lennon E., DeCicco B. T. 1991; Plasmids of Pseudomonas cepacia strains of diverse origins. Appl Environ Microbiol 57:2345–2350
    [Google Scholar]
  37. Leong J. 1986; Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209
    [Google Scholar]
  38. Lifshitz R., Kloepper J. W., Scher F. M., Tipping E. M., Laliberte M. 1986; Nitrogen-fixing Pseudomonads isolated from roots of plants grown in the Canadian high arctic. Appl Environ Microbiol 51:251–255
    [Google Scholar]
  39. McKevitt A. I., Woods D. E. 1984; Characterization of B. cepacia isolates from patients with cystic fibrosis. J Clin Microbiol 19:291–293
    [Google Scholar]
  40. McLoughlin T. J., Quinn J. P., Bettermann A., Bookland R. 1992; Pseudomonas cepacia suppression of Sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl Environ Microbiol 58:1760–1763
    [Google Scholar]
  41. Martone W. J., Tablan O. C., Jarvis W. R. 1987; The epidemiology of nosocomial epidemic Pseudomonas cepacia infections. Eur J Epidemiol 3:222–232
    [Google Scholar]
  42. Meyer J. M., Hohnadel D., Halle F. 1989; Cepabactin from Pseudomonas cepacia, a new type of siderophore. J Gen Microbiol 135:1479–1487
    [Google Scholar]
  43. Mitchell J.W., Livingstone G. A. 1968; Methods of studying plant hormones and growth regulating substances.. In Agriculture Handbook p. 336US Department of Agriculture
    [Google Scholar]
  44. Palleroni N.J. 1984; Pseudomonadaceae.. In Bergey’s Manual of Systematic Bacteriology 1 pp. 141–149 Edited by Krieg N. R., Holt J. G. . Baltimore: Williams and Wilkins;
    [Google Scholar]
  45. Palleroni N.J., Holmes B. 1981; Pseudomonas cepacia sp. nov., nom. rev. Int J Syst Bacteriol 31:479–481
    [Google Scholar]
  46. Prince A. 1992; Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract. Microb Pathog 13:251–260
    [Google Scholar]
  47. Raskin I. 1992; Role of salicylic acid in plants. Annu Ren Plant Mol Biol 43:439–463
    [Google Scholar]
  48. Rovira A.D. 1956; Plant root excretions in relation to the rhizosphere effect. II. A study of the properties of root exudate and its effect on the growth of micro-organisms isolated from the rhizosphere and control soil. Plant Soil 7:195–208
    [Google Scholar]
  49. Rovira A.D. 1965; Plant root exudates and their influence upon soil micro-organisms.. In Ecology of Soil-borne Plant Pathogens — Prelude to Biological Control p. 170 Edited by Baker K. F., Snyder W. C. . University of California;
    [Google Scholar]
  50. Sagee O., Maoz A., Mertens R., Goren R., Riov J. 1986; Comparison of different enzyme immunoassays for measuring indole-3-acetic acid in vegetative citrus tissue. Physiol Plant 68:265–270
    [Google Scholar]
  51. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56
    [Google Scholar]
  52. Sokol P.A. 1986; Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia.. J Clin Microbiol 23:560–562
    [Google Scholar]
  53. Sokol P.A., Woods D. E. 1988; Effect of pyochelin on Pseudomonas cepacia respiratory infections. Microb Pathog 5:197–205
    [Google Scholar]
  54. Sokol P. A., Lewis C. J., Dennis J. J. 1992; Isolation of a novel siderophore from Pseudomonas cepacia.. J Med Microbiol 36:184–189
    [Google Scholar]
  55. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271
    [Google Scholar]
  56. Stephan H., Freund S., Meyer J. M., Winkelmann G., Jung G. 1993; Structure elucidation of the gallium-ornibactin complex by 2D-NMR spectroscopy. Liebigs Ann Chem 1:43–48
    [Google Scholar]
  57. Suslow T.V., Schroth M. N. 1982; Rhizobacteria on sugar beets: effect of seed application and root colonization on yield. Phytopathology 72:199–206
    [Google Scholar]
  58. Thomassen M. J., Demko C. A., Klinger J. D., Stern R. C. 1985; Pseudomonas cepacia colonization among patients with cystic fibrosis. A new opportunist. Am Ren Respir Dis 113:791–796
    [Google Scholar]
  59. Tomarelli R. M., Charney J., Harding M. L. 1949; The use of azoalbumin as a substrate in the colorimetric determination of peptic and tryptic activity. J Lab Clin Med 34:428–433
    [Google Scholar]
  60. Visca P., Chiarini F., Mansi A., Vetriani C., Serino L., Orsi N. 1992a; Virulence determinants in Pseudomonas aeruginosa strains from urinary tract infections. Epidemiol Infect 108:323–336
    [Google Scholar]
  61. Visca P., Colotti G., Serino L., Verzili D., Orsi N., Chiancone E. 1992b; Metal regulation of siderophores synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58:2886–2893
    [Google Scholar]
  62. Visca P., Serino L., Orsi N. 1992c; Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdin. J Bacteriol 174:5727–5731
    [Google Scholar]
  63. Visca P., Ciervo A., Sanfilippo V., Orsi N. 1993; Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol 139:1995–2001
    [Google Scholar]
  64. Whipps J.M. 1987; Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol 107:127–142
    [Google Scholar]
  65. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-5-1069
Loading
/content/journal/micro/10.1099/13500872-140-5-1069
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error