1887

Abstract

Prophage induction in strains 168, S31 and W23 is accompanied by synthesis of two endolysins. The synthesis of those of strain 168, with molecular masses of 32 and 34 kDa, was shown to be controlled by the repressor of the defective phage PBSX. The 32 kDa protein corresponds to an -acetylmuramoyl-L-alanine amidase, and plays the major role in PBSX-mediated lysis. Its structural gene, , is the last in the PBSX late operon, whose four most distal open reading frames have been cloned and sequenced. Analysis of the nucleotide sequence suggests that the two open reading frames preceding , designated and , encode polypeptides whose combined action could play the role of a holin. The open reading frame upstream of , designated , encodes an exoprotein. The phage amidase, although endowed with a signal peptide, is apparently, like Xep, exported by a holin-like mechanism which does not involve the cleavage of the signal peptide. The presence on the chromosome of other, similar, genes, and their possible widespread occurrence, is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1855
1994-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1855.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1855&mimeType=html&fmt=ahah

References

  1. Beliveau C., Potvin C., Trudei J., Asselin A., Bellemare G. Cloning, sequencing, and expression in Escherichia coli of a Streptococcus faecalis autolysin. J Bacteriol 1991; 173:5619–5623
    [Google Scholar]
  2. Burkholder P.R., Giles N.H. Induced biochemical mutants in Bacillus subtilis. Am J Bot 1947; 34:345–348
    [Google Scholar]
  3. Buxton R.S. Prophage mutation causing heat inductibility of defective Bacillus subtilis bacteriophage PBSX. J Virol 1976; 20:22–28
    [Google Scholar]
  4. Buxton R.S. Selection of Bacillus subtilis 168 mutants with deletion of the PBSX prophage. J Gen Virol 1980; 46:427–437
    [Google Scholar]
  5. Calendard R. The bacteriophages. In The Viruses 1988 Edited by Fraenkel-Conrat H., Wagner R.R. New York: Plenum; 1 pp 198 304–305 vol. 2, pp. 265, 535
    [Google Scholar]
  6. Chambers S.P., Prior S.E., Barstow D.A., Minton N.P. The pMTL nic-cloning vectors. I. Improved pUC polylinker region to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 1988; 68:139–149
    [Google Scholar]
  7. Chu C.P., Kariyama R., Daneo-Moore L., Shockman G.D. Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. J Bacteriol 1992; 174:1619–1625
    [Google Scholar]
  8. Chung C.T., Niemela S.L., Miller R.H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 1989; 86:2172–2175
    [Google Scholar]
  9. Cutting S.M., Vander Horn P.B. Genetic analysis. In Molecular Biological Methods for Bacillus 1990 Edited by Harwood C.R., Cutting S.M. New York: John Wiley; pp 27–74
    [Google Scholar]
  10. Dedonder R.A., Lepesant J.A., Lepesant-Keizlarova J., Billault A., Steinmetz M., Kunst F. Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168. Appl Environ Microbiol 1977; 33:989–993
    [Google Scholar]
  11. Del Sal G., Manfioletti G., Schneider C. A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 1988; 16:9878
    [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12:387–395
    [Google Scholar]
  13. Diaz E., Lopez R., Garcia J.L. EJ-1, a temperate bacteriophage of Streptococcus pneumoniae with a myoviridae morpho-type. J Bacteriol 1992; 174:5516–5525
    [Google Scholar]
  14. Espion D., Kaiser K., Dambly-Chaudiere C. A third defective lambdoid prophage of Escherichia coli K12 defined by the X derivative, Aqinlll. Mol Biol 1983; 170:611–633
    [Google Scholar]
  15. Farmer J.L., Rothman F. Transformable thymine requiring mutant of Bacillus subtilis 168. J Bacteriol 1965; 127:1427–1442
    [Google Scholar]
  16. Feinberg A.P., Vogelstein B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 1983; 132:6–13
    [Google Scholar]
  17. Foster S. Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 1991; 137:1987–1998
    [Google Scholar]
  18. Foster S. Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 1992; 174:464–470
    [Google Scholar]
  19. Foster S. Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes; identification and characterization of CWLA-related prophage proteins. J Gen Microbiol 1993; 139:3177–3184
    [Google Scholar]
  20. Frischauf A.M., Lehrach H., Poustka A., Murray N. Lambda replacement vectors carrying polylinker sequences. I Moi Biol 1983; 170:827–842
    [Google Scholar]
  21. Garcia E., Garcia J.L., Garcia P., Arraras A., Sanchez-Puelles J.M., Lopez R. Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc Natl Acad Sci USA 1988; 85:914–918
    [Google Scholar]
  22. Garcia P., Garcia J.L., Garcia E., Sanchez-Puelles J.M., Lopez R. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 1990; 86:81–88
    [Google Scholar]
  23. Garvey K.J., Saedi M.S., Ito J. Nucleotide sequence of Bacillus phage z29 genes 14 and 15: homology of gene 15 with other phage lysozymes. Nucleic Acids Res 1986; 14:100001–10008
    [Google Scholar]
  24. Grossberger D. Minipreps of DNA from bacteriophage lambda. Nucleic Acids Res 1987; 15:6737
    [Google Scholar]
  25. Heery D.M., Gannon F., Powell R. A simple method for subcloning DNA fragments from gel slices. Trends Genet 1990; 6:173
    [Google Scholar]
  26. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 1986; 12:4683–4690
    [Google Scholar]
  27. Huang W.M., Marmur J. Characterization of inducible bacteriophage in Bacillus licheniformis. J Virol 1970; 5:237–246
    [Google Scholar]
  28. Ionesco H., Ryter A., Schaeffer P. Sur un bacteriophage heberge par la souche Marburg de Bacillus subtilis. Ann Inst Pasteur 1964; 107:764–776
    [Google Scholar]
  29. Jaunin P. Role des enzymes bacteriolytiques du phage defectif PBSX dans le metabolisme de Ienveloppe de Bacillus subtilis 1987 MSc Diploma, University of Lausanne;
    [Google Scholar]
  30. Kajie S.I., Ideta R., Yamato I., Anraku Y. Molecular cloning and DNA sequence of dniR, a gene affecting anaerobic expression of the Escherichia coli hexaheme nitrite reductase. FEMS Microbiol Lett 1991; 83:205–212
    [Google Scholar]
  31. Karamata D., Gross J.D. Isolation and genetic analysis of temperature-sensitive mutants of Bacillus subtilis 168. Mol & Gen Genet 1970; 207:73–81
    [Google Scholar]
  32. Kuroda A., Sekiguchi J. Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. J Gen Microbiol 1990; 136:2209–2216
    [Google Scholar]
  33. Kuroda A., Sekiguchi J. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol 1991; 173:7304–7312
    [Google Scholar]
  34. Lazarevic V., Margot P., Soldo B., Karamata D. Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J Gen Microbioi 1992; 138:1949–1961
    [Google Scholar]
  35. Lederc D., Asselin A. Detection of bacterial cell wall hydrolase after denaturing polyacrylamide gel electrophoresis. Can J Microbiol 1989; 35:749–753
    [Google Scholar]
  36. Lee J.K., Edwards C.W., Hulett F.M. Identification of four unique clones encoding 10 kDa proteins from Bacillus that cause phenotypic complementation of a phoA mutant strain of Escherichia coli. J Gen Microbiol 1991; 137:667–677
    [Google Scholar]
  37. Longchamp P.F. Etude de Porganisation genetique du bacteriophage defectif PBSX de Bacillus subtilis par mutagen'ese cf insertion 1990 MSc Diploma, University of Lausanne;
    [Google Scholar]
  38. Margot P., Roten C.-A., Karamata D. N-acetylmuramoyl-L-alanine amidase assay based on specific radioactive labeling of muropeptide L-alanine: quantitation of the enzyme activity in the autolysin deficient Bacillus subtilis 168, flaD strain. Anal Biochem 1991; 198:15–18
    [Google Scholar]
  39. Mauel C. Role des genes DNA de Bacillus subtilis dans Pinduction et le developpement du bacteriophage defectif PBSX 1984 PhD thesis, University of Lausanne;
    [Google Scholar]
  40. Mauel C., Karamata D. Characterization of proteins induced by mitomycin C treatment of Bacillus subtilis. J Virol 1984; 49:806–812
    [Google Scholar]
  41. Noirot P., Petit M.A., Ehrlich S.D. Plasmid replication stimulates DNA recombination in Bacillus subtilis. J Moi Biol 1987; 196:39–48
    [Google Scholar]
  42. Oda Y., Nakayama R., Kuroda A., Sekiguchi J. Molecular cloning, sequence analysis, and characterization of a new cell wall hydrolase, CwlL, of Bacillus licheniformis. Mol & Gen Genet 1993; 241:380–388
    [Google Scholar]
  43. Okamoto K., Mudd J.A., Mangan J., Huang W.M., Subbaiah T.V., Marmur J. Properties of the defective phage of Bacillus subtilis. J Moi Biol 1968; 34:413–428
    [Google Scholar]
  44. Oultram J.D., Peck H., Brehm J.K., Thompson D., Swinfield T.J., Minton N.P. Introduction of genes for leucine biosynthesis from Clostridium pasteurianum into Clostridium ace-tobutylicum. Mol & Gen Genet 1988; 214:177–179
    [Google Scholar]
  45. Potvin C., Lederc D., Tremblay G., Asselin A., Bellemare G. Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli. Mol & Gen Genet 1988; 214:241–248
    [Google Scholar]
  46. Reed K.C., Mann D.A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 1985; 13:7207–7221
    [Google Scholar]
  47. Romero A., Lopez R., Garcia P. Sequence of the Streptococcus pneumoniae bacteriophage HB-3 amidase reveals high homology with the major host autolysin. J Bacteriol 1990; 172:5064–5070
    [Google Scholar]
  48. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  49. Seaman E., Tarmy E., Marmur J. Inductible phages of Bacillus subtilis. Biochemistry 1964; 3:607–612
    [Google Scholar]
  50. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementary to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 1974; 71:1342–1346
    [Google Scholar]
  51. Shuttleworth H.L., Duggleby C.J., Jones S.A., Atkinson T., Minton N.P. Nucleotide sequence analysis of the gene for protein A from Staphylococcus aureus Cowan 1 (NCTC 8530) and its enhanced expression in Escherichia coli. Gene 1987; 58:283–295
    [Google Scholar]
  52. Siegel E.C., Marmur J. Temperature-sensitive induction of bacteriophage in Bacillus subtilis 168. J Virol 1969; 4:610–618
    [Google Scholar]
  53. Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517
    [Google Scholar]
  54. Steensma H.Y., Robertson L.A., Van Elsa J.D. The occurrence and taxonomic value of PBSX-like defective phages in the genus Bacillus. Antonie Leeuwenhoek 1978; 44:353–366
    [Google Scholar]
  55. Steiner M., Lubitz W., Blasi U. The missing link in phage lysis of gram-positive bacteria: gene 14 of Bacillus subtilis phage $29 encodes the functional homolog of Lambda S protein. J Bacteriol 1993; 175:1038–1042
    [Google Scholar]
  56. Strathern A., Herskowitz I. Defective prophage in Escherichia coli K12 strains. Virology 1975; 67:136–143
    [Google Scholar]
  57. Studer R.E., Karamata D. Cell wall proteins in Bacillus subtilis. In Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function 1988 Edited by Actor P. Washington, DC: American Society for Microbiology; pp 146–150
    [Google Scholar]
  58. Thurm P., Garro A.J. Bacteriophage-specific protein synthesis during induction of the defective Bacillus subtilis bacteriophage PBSX. J Virol 1975a; 16:179–183
    [Google Scholar]
  59. Thurm P., Garro A.J. Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX. J Virol 1975b; 16:184–191
    [Google Scholar]
  60. Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 1973; 246:40–41
    [Google Scholar]
  61. Tsutsumi Y., Hirokawa H., Shishido K. A new defective phage containing a randomly selected 8 kilobase-pairs fragment of host chromosomal DNA inducible in a strain of Bacillus natto. FEMS Microbiol Lett 1990; 72:41–46
    [Google Scholar]
  62. Ward J.B., Curtis C.A.M., Taylor C., Buxton R.S. Purification and characterization of two phage PBSX-induced lytic enzymes of Bacillus subtilis 168: an IV-acetylmuramoyl-L-alanine amidase and an IV-acetylmuramidase. J Gen Microbiol 1982; 128:1171–1178
    [Google Scholar]
  63. Wood H.E., Dawson M.T., Devine K.M., McConnell D.J. Characterization of PBSX, a defective prophage of Bacillus subtilis. J Bacteriol 1990a; 172:2667–2674
    [Google Scholar]
  64. Wood H.E., Devine K.M., McConnell D.J. Characterization of a repressor gene (xre) and a temperature-sensitive allele from Bacillus subtilis prophage, PBSX. Gene 1990b; 96:83–88
    [Google Scholar]
  65. Young R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 1992; 56:430–480
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-1855
Loading
/content/journal/micro/10.1099/13500872-140-8-1855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error