1887

Abstract

The glycolytic flux was investigated in the thermosensitive adenylate cyclase mutant . Directly after a shift to restrictive temperature, the specific CO production rate increased from about 250 nmol min (mg protein) to more than 400 nmol min (mg protein), but then the CO production gradually fell to about 70 nmol min (mg protein) after 5 h. O consumption at restrictive temperature continued at more or less the same rate as at permissive temperature. The temperature shift in the mutant resulted in an increase in the estimated intracellular cAMP concentration from about 1.1 μM to 1.8 μM. This indicates that high cAMP levels are not sufficient for cell cycle progression and high glycolytic activity. The decrease in glycolytic activity at restrictive temperature was not paralleled by a similar decrease in the specific activity of any of the glycolytic enzymes, but correlated with a decrease in hexose transport. A drop in intracellular concentrations of the early metabolites of glycolysis further indicated a defect in transport at restrictive temperature. Our data suggest that glucose transport has a high control on glycolytic flux.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-8-1891
1994-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/8/mic-140-8-1891.html?itemId=/content/journal/micro/10.1099/13500872-140-8-1891&mimeType=html&fmt=ahah

References

  1. Beck C., Von Meyenburg K. Enzyme patterns and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation. J 1968; Bacteriol96:479–486
    [Google Scholar]
  2. Bergmeyer H.U. Methods of Enzymatic Analysis 1974 2nd edn Academic Press: New York;
    [Google Scholar]
  3. Bernt E., Gutmann I. Ethanol. Determination with alcohol dehydrogenase and NAD. In: Methods in Enzymatic Analysis 1974 Edited by Bergmeyer H.U. New York: Academi; pp 1499–1502
    [Google Scholar]
  4. Bisson L.F., Fraenkel D.G. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1983a; 80:1730–1734
    [Google Scholar]
  5. Bisson L.F., Fraenkel D.G. Transport of 6-deoxyglucose in Saccharomyces cerevisiae. J Bacteriol 1983b; 155:995–1000
    [Google Scholar]
  6. Boutelet F., Petitjean A., Hilger F. Yeast cdc35 mutants are defective in adenylate cyclase and are allelic with cyr1 mutants while CAS1, a new gene, is involved in the regulation of adenylate cyclase. EMBO J 1985; 4:2635–2641
    [Google Scholar]
  7. Broach J.R. RAS genes in Saccharomyces cerevisiae-signal transduction in search of a pathway. Trends Genet 1991; 7:28–33
    [Google Scholar]
  8. Broek D., Toda T., Michaeli T., Levin L., Birchmeier C., Zoller M., Powers S., Wigler M. The 3 cerevisiae CDC25 gene product regulates the RAS/Adenylate cyclase pathway. Cell 1987; 48:789–799
    [Google Scholar]
  9. Busturia A., Lagunas R. Catabolite inactivation of the glucose transport systems in Saccharomyces cerevisiae. J Gen Microbiol 1986; 132:379–385
    [Google Scholar]
  10. Camonis J.H., Kalekine M., Gondre B., Garreau H., Boy-Marcotte E., Jacquet M. Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. EMBO J 1986; 5:375–380
    [Google Scholar]
  11. Casperson G.F., Walker N., Bourne H.R. Isolation of the gene encoding adenylate cyclase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1985; 82:5060–5063
    [Google Scholar]
  12. De Koning W., Van Dam K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 1992; 204:118–123
    [Google Scholar]
  13. De Koning W., Groeneveld K., Oehlen L.J.W.M., Berden J.A., Van Dam K. Changes in the activities of key enzymes of glycolysis during the cell cycle in yeast-a rectification. J Gen Microbiol 1991; 137:971–976
    [Google Scholar]
  14. Fedor-Chaiken M., Deschenes R.J., Broach J.R. SRV2, a gene required for R AS activation of adenylate cyclase in yeast. Cell 1990; 61:329–340
    [Google Scholar]
  15. Field J., Vojtec A., Ballester R., Bolger G., Colicelli J., Ferguson K., Gerst J., Kataoka T., Michaeli T., Powers S., Riggs M., Rodgers L., Wheland B., Wigler M. Cloning and characterization of CAP, the S cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 1990a; 61:319–327
    [Google Scholar]
  16. Field J., Xu H.P., Michaeli T., Ballester R., Sass P., Wigler M., Colicelli J. Mutations of the adenylyl cyclase gene that block RAS function in Saccharomyces cerevisiae. Science 1990b; 247:464–467
    [Google Scholar]
  17. Gerst J.E., Ferguson K., Vojtek A., Wigler M., Field J. CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Mol Cell Biol 1991; 11:1248–1257
    [Google Scholar]
  18. Hartwell L.H. Saccharomyces cerevisiae cell cycle. Bacteriol Rev 1974; 38:164
    [Google Scholar]
  19. Iida H., Yahara I. Specific early-G1 blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the GO of higher eucaryotes. J Cell Biol 1984; 98:1185–1193
    [Google Scholar]
  20. Kataoka T., Broek D., Wigler M. DNA sequence and characterization of the A. cerevisiae gene encoding adenylate cyclase. Cell 1985; 43:493–505
    [Google Scholar]
  21. Kappeli O. Regulation of carbohydrate metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 1986; 28:181–209
    [Google Scholar]
  22. Lagunas R. Energetic irrelevance of aerobiosis for Saccharomyces cerevisiae growing on sugars. Mol Cell Biochem 1979; 27:139–146
    [Google Scholar]
  23. Lagunas R., Dominguez C., Busturia A., Sacz M.J. Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport system. J Bacteriol 1982; 152:19–25
    [Google Scholar]
  24. Lopez S., Gancedo J.M. Effect of metabolic conditions on protein turnover in yeast. Biochem J 1979; 178:769–776
    [Google Scholar]
  25. Matsumoto K., Uno I., Ishikawa T. Genetic analysis of the role of cAMP in yeast. Yeast 1985; 1:15–24
    [Google Scholar]
  26. Novak B., Mitchison J.M. Change in the rate of COa production in synchronous cultures of the fission yeast Schizosaccharomyces pombe: a periodic cell cycle event that persists after the DNA-division cycle has been blocked. J Cell Sci 1986; 86:191–206
    [Google Scholar]
  27. Oehlen L.J.W.M., Scholte M.E., De Koning W., Van Dam K. Inactivation of the CDC25 gene product in Saccharomyces cerevisiae leads to a decrease in glycolytic activity which is independent from cAMP levels. J Gen Microbiol 1993; 139:2091–2100
    [Google Scholar]
  28. Reed S.I. The selection of Saccharomyces cerevisiae mutants defective in the start event of cell division. Genetics 1980; 95:561–577
    [Google Scholar]
  29. Sasaki R., Hirose M., Sugimoto E., Chiba H. Studies on a role of the 2, 3-diphosphoglycerate phosphatase activity in the yeast phosphoglycerate mutase reaction. Biochim Biophys Acta 1971; 227:595–607
    [Google Scholar]
  30. Schuddemat J., Van Den Broek P.J.A., Van Steveninck J. Effect of xylose incubation on the glucose transport system in Saccharomyces cerevisiae. Biochim Biophys Acta 1986; 861:489–493
    [Google Scholar]
  31. Schuddemat J., Van Den Broek P.J.A., Van Steveninck J. The influence of ATP on sugar uptake mediated by the constitutive glucose carrier of Saccharomyces cerevisiae. Biochim Biophys Acta 1988; 937:81–87
    [Google Scholar]
  32. Sy J., Tamai Y. An altered adenylate cyclase in cdc35-1 cell division cycle mutant of yeast. Biochem Biophys Res Commun 1986; 140:723–727
    [Google Scholar]
  33. Tanaka K., Matsumoto K., Toh-e A. IRA1, an inhibitory regulator of the R AS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:757–768
    [Google Scholar]
  34. Tanaka K., Nakafuku M., Tamanoi F., Kaziro Y., Matsumoto K., Toh-e A. IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol 1990; 10:4303–4313
    [Google Scholar]
  35. Tatchell K. RAS genes and growth control in Saccharomyces cerevisiae. J Bacteriol 1986; 166:364–367
    [Google Scholar]
  36. Thomer J. An essential role for cAMP in growth control: the case for yeast. Cell 1982; 30:5–6 2133
    [Google Scholar]
  37. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 1985; 40:27–36
    [Google Scholar]
  38. Tovey K.G., Oldham K.G., Whelan J.A.M. A simple direct assay for cyclic AMP in plasma and other biological samples using an improved competitive binding technique. Clin Chim Acta 1974; 56:221–234
    [Google Scholar]
  39. Van Doom J., Valkenburg J.A.C., Scholte M.E., Oehlen L.J.W.M., Van Driel R., Postma P.W., Nanninga N., Van Dam K. Changes in activities of several enzymes involved in carbohydrate metabolism during the cell cycle. J Bacteriol 1988; 170:4808–4815
    [Google Scholar]
  40. Van Schaftingen E., Hers H.G. Fructose 2, 6-bisphosphate in relation with the resumption of metabolic activity in slices of Jerusalem artichoke tubers. FEBS Lett 1983; 164:195–200
    [Google Scholar]
  41. Vojtek A., Haarer B., Field J., Gerst J.T., Pollard D., Brown S., Wigler M. Evidence for a functional link between profilin and CAP in the yeast S. cerevisiae. Cell 1991; 66:497–505
    [Google Scholar]
  42. Walsh M.G., Smits H.P., Scholte M., Van Dam K. Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J Bacteriol 1994; 176:953–958
    [Google Scholar]
  43. Wang J., Suzuki N., Kataoka T. The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins. Mol Cell Biol 1992; 12:4937–4945
    [Google Scholar]
  44. Wigler M., Powers S., Broek D., Toda T., Cameron S., Nikawa J., Michaeli T., Colicelli J., Ferguson K. Studies of RAS function in the yeast Saccharomyces cerevisiae. Cold Spring Harbor Symp Quant Biol 1988; LIII:649–655
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-8-1891
Loading
/content/journal/micro/10.1099/13500872-140-8-1891
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error