1887

Abstract

The presence and activities of the enzymes of the urea cycle in the bacterium were investigated employing one- and two-dimensional NMR spectroscopy and radioactive tracer analysis. Cell suspensions, lysates and membrane preparations generated -ornithine and ammonium at high rates in incubations with -arginine, indicating the presence of arginase activity. Anabolic ornithine transcarbamoylase (OTCase) activity was identified by the formation of heat-stable products in incubations of cell-free extracts with ornithine and radiolabelled carbamoyl phosphate. The heat-labile product that resulted from incubations of cell-free extracts with citrulline radiolabelled in the guanidino moiety revealed the presence of catabolic OTCase activity. Argininosuccinate formation and catalysis indicated the presence of argininosuccinate synthetase and argininosuccinase activities. The findings suggested that has a urea cycle which acts as an effective mechanism to extrude excess nitrogen from cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-10-2959
1996-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/10/mic-142-10-2959.html?itemId=/content/journal/micro/10.1099/13500872-142-10-2959&mimeType=html&fmt=ahah

References

  1. Bascarán V., Hardisson C., Braña A.F. 1989; Isolation and characterization of nitrogen-deregulated mutants of Streptomyces clavuligerus . J Gen Microbiol 135:2475–2482
    [Google Scholar]
  2. Bates M., Weiss R.L., Clarke S. 1985; Ornithine transcarbamylase from Neurospora crassa: purification and properties. Arch Biochem Biophys 239:172–183
    [Google Scholar]
  3. Calam J. 1993; The pathogenesis of Helicobacter pylori infection and duodenal ulcer: the role of gastrin and other soluble factors. In Helicobacter pylori Biology and Clinical Practice pp. 239–255 Edited by Goodwin C.S., Worsley B.W. Boca Raton, FL: CRC Press;
    [Google Scholar]
  4. Dessaux Y., Petit A., Tempé J., Demarez M., Legrain C., Wiame J.M. 1986; Arginine catabolism in Agrobacterium strains: role of the Ti plasmid. J Bacterial 166:44–50
    [Google Scholar]
  5. Eaton K.A., Krakowka S. 1994; Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori . Infect Immun 62:3604–3607
    [Google Scholar]
  6. Eaton K.A., Dewhirst F.E., Radin M.J., Fox J.G., Paster B.J., Krakowka S., Morgan D.R. 1993; Helicobacter acinonyx sp. nov., isolated from cheetahs with gastritis. Int J Syst Bacteriol 43:99–106
    [Google Scholar]
  7. Eisenstein E., Duong L.T., Ornberg R.L., Osborne J.C. Jr Hensley P. 1986; Regulation of arginine metabolism in Saccharomyces cerevisiae . J Biol Chem 25:12814–12819
    [Google Scholar]
  8. Ferrero R.L, Courcoux P., Labigne A. 1992; Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J Bacteriol 174:4212–4217
    [Google Scholar]
  9. Goodwin C.S., Armstrong J.A., Marshall B.J. 1986; Campylobacter pyloridis, gastritis, and peptic ulceration. J Clin Pathol 39:353–365
    [Google Scholar]
  10. Gottschalk G. 1985 Bacterial Metabolism, 2nd edn. pp. 1–4 New York: Springer-Verlag;
    [Google Scholar]
  11. Graham D.Y. 1991; Helicobacter pylori. Its epidemiology and its role in duodenal ulcer disease. J Gastroenterol Hepatol 6:105–113
    [Google Scholar]
  12. Gruninger S.E., Goldman M. 1988; Evidence for urea cycle activity in Sporosarcina ureae . Arch Microbiol 150:394–399
    [Google Scholar]
  13. Gupta M., Carr N.G. 1981; Enzymology of arginine metabolism in heterocyst forming cyanobacteria. FEMS Microbiol Lett 12:179–181
    [Google Scholar]
  14. Hazell S.L. 1992; The role of Helicobacter pylori urease. A contentious issue. Eur J Gastroenterol Hepatol (Suppl 1) 4:S55–S59
    [Google Scholar]
  15. Hazell S.L, Lee A., Brady L., Hennessy W. 1986; Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J Infect Dis 153:658–663
    [Google Scholar]
  16. Hiort U., Kleczkowski K., Kating H. 1967; Untersuchungen zum Stoffwechsel des Harnstoffs in Mikroorganismen. VI. Die spezifischen Aktivitäten der Enzyme des Ornithin-Cyclus in Micrococcus denitrificans Beij. Arch Mikrobiol 55:311–319
    [Google Scholar]
  17. International Agency for Cancer Research 1994 Monographs on the Evaluation of Cancer Risks to Humans 61 pp. 177–240 Lyon: World Health Organization;
    [Google Scholar]
  18. Kharamov V.A., Kharats K.S. 1969; The arginase activity of Escherichia coli . Zt Mikrohiol Epidemiol Immunobiol 69:120–123
    [Google Scholar]
  19. Lee A. 1989; Campylobacter pylori and CLO in animals: overview of mucus-colonizing organisms. In Campylobacter pylori and Gastroduodenal Disease pp. 246–260 Edited by Rathbone B.J., Heatley R.V. Oxford: Blackwell Scientific;
    [Google Scholar]
  20. Mendz G.L., Hazell S.L. 1993; Fumarate catabolism by Helicobacter pylori . Biochem Mol Biol Int 31:325–332
    [Google Scholar]
  21. Mendz G.L., Hazell S.L. 1995; Amino acid utilization by Helicobacter pylori . Int J Biochem Cell Biol 27:1085–1093
    [Google Scholar]
  22. Mendz G.L., Hazell S.L., van Gorkom L. 1994; Pyruvate metabolism by Helicobacter pylori . Arch Microbiol 162:187–192
    [Google Scholar]
  23. Miles A.A., Misra S.S. 1938; The estimation of the bactericidal power of blood. J Hyg 38:732–749
    [Google Scholar]
  24. Moreno-Vivián C., Soler G., Castillo F. 1992; Arginine catabolism in the phototrophic bacterium Rhodobacter capsulatus E1F1. Eur J Biochem 204:531–537
    [Google Scholar]
  25. Morris A., Nicholson G. 1987; Ingestion of Campylobacter pyloridis causes gastritis and raised fasting gastric pH. Am J Gastroenterol 82:192–199
    [Google Scholar]
  26. Nedenskov P. 1994; Nutritional requirements for growth of Helicobacter pylori . Appl Environ Microbiol 60:3450–3453
    [Google Scholar]
  27. O’Rourke J.L., Solnick J., Lee A., Tompkins L.S. 1992; Helicobacter heilmanii (previously Gastrospirillum), a new species of Helicobacter in humans and animals. Ir J Med Sci (Suppl 10) 161:31
    [Google Scholar]
  28. Owen R.J., Martin S.R., Borman P. 1985; Rapid urea hydrolysis by gastric Campylobacters . Lancet i:111
    [Google Scholar]
  29. Patchett M.L., Daniel R.M., Hugh W.M. 1991; Characterisation of arginase from the extreme thermophile Bacillus caldovelox . Biochim Biophys Acta 1077:291–298
    [Google Scholar]
  30. Prozesky O.W., Grabow W.O.K., van der Merwe S., Coetzee J.N. 1973; Arginine cluster in the Proteus-Providence group. J Gen Microbiol 77:237–240
    [Google Scholar]
  31. Ramaley R.F., Bernlhor R.W. 1965; Postlogarithmic phase metabolism of sporulating microorganisms. III. Breakdown of arginine to glutamic acid. J Mol Biol 11:842–844
    [Google Scholar]
  32. Reynolds D.J., Penn C.W. 1994; Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology 140:2649–2656
    [Google Scholar]
  33. Sans N., Schindler U., Schroeder J. 1988; Ornithine cyclodeaminase from Ti plasmid C58: DNA sequence, enzyme properties and regulation of activity by arginine. Eur J Biochem 173:123–130
    [Google Scholar]
  34. Soru E. 1983; Chemical and immunological properties of B. anthracis arginase and its metabolic involvement. Mol Cell Biochem 50:173–183
    [Google Scholar]
  35. Soru E., Zaharia O. 1976; Chemical and immunological specificity of arginase isolated from a pathogenic S. aureus strain. Rev Roum Biochem 13:49–60
    [Google Scholar]
  36. Stanley J., Linton D., Burnens A.P., Dewhirst F.E., On S.L.W., Porter A., Costas M. 1994; Helicobacter pullorum sp. nov. - genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis. Microbiology 140:3441–3449
    [Google Scholar]
  37. Vanzanten S.J.O.V., Sherman P. 1994; Helicobacter pylori infection as a cause of gastritis, duodenal ulcer, gastric cancer and nonulcer dyspepsia - a systematic review. Can Med Assoc J 150:177–185
    [Google Scholar]
  38. Vargha G., Karsai T., Szabo G. 1983; A conditional aerial mycelium mutant of Streptomyces fradiae with deficient ornithine carbamoyltransferase activity. J Gen Microbiol 129:539–542
    [Google Scholar]
  39. Vissers S., Dessaux Y., Legrain C., Wiame J.M. 1981; Feedback inhibition by arginine of ornithine carbamoyltransferase of Agrobacterium tumefaciens . Arch Int Physiol Biochim 98:B83–B84
    [Google Scholar]
  40. Weathers P. S., Chee H. L., Allen M. M. 1978; Arginine catabolism in Aphonocapsa 6308. Arch Microbiol 118:1–6
    [Google Scholar]
  41. Zeller A., Van Orden L.S., Vogtli A. 1954; Enzymology of mycobacteria. VII. Degradation of guanidine derivatives. J Biol Chem 260:3350–3354
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-10-2959
Loading
/content/journal/micro/10.1099/13500872-142-10-2959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error