1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-217
1996-02-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/2/mic-142-2-217.html?itemId=/content/journal/micro/10.1099/13500872-142-2-217&mimeType=html&fmt=ahah

References

  1. Botsford J. L., Harman J. G. 1992; Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122
    [Google Scholar]
  2. Blumer K. J., Johnson G. L. 1994; Diversity in function and regulation of MAP kinase pathways. Trends Biochem Sci 19:236–240
    [Google Scholar]
  3. Chambliss G. H. 1993; Carbon source-mediated catabolite repression. Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics213–219 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Chen Y., Reizer J., Saier M. H. Jr, Fairbrother W. J., Wright P. E. 1993; Mapping of the binding interfaces of the proteins of the bacterial phosphotransferase system, HPr and IIAglc. Biochemistry 32:32–37
    [Google Scholar]
  5. Cook G. M., Kearns D. B., Russell J. B., Reizer J., Saier M. H. Jr 1995a; Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms. Microbiology 141:2261–2269
    [Google Scholar]
  6. Cook G. M., Ye J.-J., Russell J. B., Saier M. H. Jr 1995b; Properties of two sugar phosphate phosphatases from Streptococcus bovis and their potential involvement in inducer expulsion. J Bacteriol 177:7007–7009
    [Google Scholar]
  7. Cortay J.-C., Negre D., Scarabel M., Ramseier T. M., Vartak N. B., Reizer J., Saier M. H. Jr, Cozzone A. J. 1994; In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis. J Biol Chem 269:14885–14891
    [Google Scholar]
  8. Cozzone A. J. 1993; ATP-dependent protein kinases in bacteria. J Cell Biochem 51:7–13
    [Google Scholar]
  9. Davis R. J. 1993; The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556
    [Google Scholar]
  10. Deutscher J., Engelmann R. 1984; Purification and characterization of an ATP-dependent protein kinase from Streptococcus faecalis. FEMS Microbiol Lett 23:157–162
    [Google Scholar]
  11. Deutscher J., Saier M. H. Jr 1983; ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci USA 80:6790–6794
    [Google Scholar]
  12. Deutscher J., Saier M. H. Jr 1988; Protein phosphorylation in bacteria: regulation of gene expression, transport function, and metabolic processes. Angew Chem Int Ed Engl 27:1040–1049
    [Google Scholar]
  13. Deutscher J., Kessler U., Alpert C. A., Hengstenberg W. 1984; Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function. Biochemistry 23:4455–4460
    [Google Scholar]
  14. Deutscher J., Pevec B., Beyreuther K., Kiltz H.-H., Hengstenberg W. 1986; Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr. Biochemistry 25:6543–6551
    [Google Scholar]
  15. Deutscher J., Reizer J., Fischer C., Galinier A., Saier M. H. Jr, Steinmetz M. 1994; Loss of protein kinase-catalyzed phosphorylation of HPr, a phospho-carrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J Bacteriol 176:3336–3344
    [Google Scholar]
  16. Deutscher J., Kuster E., Bergstedt U., Charrier V., Hillen W. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to catabolite repression in Gram-positive bacteria. Mol Microbiol 15:1049–1053
    [Google Scholar]
  17. Eisermann R., Deutscher J., Gonzy-Tréboul G., Hengstenberg W. 1988; Site-directed mutagenesis with the ptsH gene of Bacillus subtilis. Isolation and characterization of heat-stable proteins altered at the ATP-dependent regulatory phosphorylation site. J Biol Chem 263:17050–17054
    [Google Scholar]
  18. Fairbrother W. J., Cavanagh J., Dyson H. J., Palmer A. G. III, Sutrina S. L., Reizer J., Saier M. H. Jr, Wright P. E. 1991; Polypeptide backbone resonance assignments and secondary structure of Bacillus subtilis Enzyme IIP10 determined by two-dimensional and three-dimensional heteronuclear NMR spectroscopy. Biochemistry 30:6896–6907
    [Google Scholar]
  19. Fairbrother W. J., Gippert G. P., Reizer J., Saier M. H. Jr, Wright P. E. 1992a; Low resolution solution structure of the Bacillus subtilis glucose permease IIA domain derived from heteronuclear three-dimensional NMR spectroscopy. FEBS Lett 296:148–152
    [Google Scholar]
  20. Fairbrother W. J., Palmer A. G. III, Ranee M., Reizer J., Saier M. H. Jr, Wright P. E. 1992b; Assignment of the aliphatic ·H and 13C resonances of the Bacillus subtilis glucose permease IIA domain using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry 31:4413–4425
    [Google Scholar]
  21. Fischer E. H. 1993; Protein phosphorylation and cellular regulation II (Nobel lecture). Angew Chem Int Ed Engl 32:1130–1137
    [Google Scholar]
  22. Fisher S. H. 1987; Catabolite repression in Bacillus subtilis and Streptomyces. Sugar Transport and Metabolism in Gram-Positive Bacteria365–385 Edited by Reizer J., Peterkofsky A. Chichester: Ellis Horwood;
    [Google Scholar]
  23. Fisher S. H., Sonenshein A. L. 1991; Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu Rev Microbiol 45:107–135
    [Google Scholar]
  24. Fujita Y., Miwa Y. 1994; Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein. J Bacteriol 176:511–513
    [Google Scholar]
  25. Fujita Y., Miwa Y., Galinier A., Deutscher J. 1995; Specific recognition of the Bacillus subtilis gnt cis-acting catabolite responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17:953–960
    [Google Scholar]
  26. Grundy F. J., Waters D. A., Allen S. H. G., Henkin T. M. 1993; Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol 175:7348–7355
    [Google Scholar]
  27. Grundy F. J., Turinsky A. J., Henkin T. M. 1994; Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J Bacteriol 176:4527–4533
    [Google Scholar]
  28. Herzberg O., Reddy P., Sutrina S., Saier M. H. Jr, Reizer J., Kapadia G. 1992; Structure of the histidine-containing phospho-carrier protein HPr from Bacillus subtilis at 2-0-A resolution. Proc Natl Acad Sci USA 89:2499–2503
    [Google Scholar]
  29. Hoischen C, Dijkstra A., Rottem S., Reizer J., Saier M. H. Jr 1993; Presence of protein constituents of the Gram-positive bacterial phosphotransferase regulatory system in Acholeplasma laidlawii. J Bacteriol 175:6599–6604
    [Google Scholar]
  30. Hueck C. J., Hillen W. 1995; Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria?. Mol Microbiol 15:395–401
    [Google Scholar]
  31. Hueck C. J., Hillen W., Saier M. H. Jr 1994; Analysis of a tractive sequence mediating catabolite repression in Gram-positive bacteria. Res Microbiol 145:503–518
    [Google Scholar]
  32. Kapadia G., Reizer J., Sutrina S. L., Saier M. H. Jr, Reddy P., Herzberg O. 1990; Crystallization of the Bacillus subtilis histidine-containing phospho-carrier protein HPr and of some of its site-directed mutants. J Mol Biol 212:1–2
    [Google Scholar]
  33. Kim J. H., Guvener Z. T., Cho J. Y., Chung K.-C., Chambliss G. H. 1995; Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J Bacteriol 177:5129–5134
    [Google Scholar]
  34. Klier A. F., Rapoport G. 1988; Genetics and regulation of carbohydrate catabolism in Bacillus. Annu Rev Microbiol 42:65–95
    [Google Scholar]
  35. Krebs E. G. 1993; Protein phosphorylation and cellular regulation I (Nobel lecture). Angew Chem Int Ed Engl 32:1122–1129
    [Google Scholar]
  36. Liao D.-I., Kapadia G., Reddy P., Saier M. H. Jr, Reizer J., Herzberg O. 1991; Structure of the IIA domain of the glucose permease of Bacillus subtilis at 2“2-A resolution. Biochemistry 30:9583–9594
    [Google Scholar]
  37. Magasanik B. 1970; Glucose effects: inducer exclusion and repression. The Lactose Operon189–219 Edited by Beckwith J. R., Zipser D. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Mitchell W. J., Reizer J., Herring C., Hoischen C., Saier M. H. Jr 1993; Identification of a phosphoenolpyruvate: fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes. J Bacteriol 175:2758–2761
    [Google Scholar]
  39. Miwa Y., Fujita Y. 1990; Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence involved in catabolite repression in the genus Bacillus. Nucleic Acids Res 18:7049–7053
    [Google Scholar]
  40. Miwa Y., Fujita Y. 1993; Promoter-independent catabolite repression of the Bacillus subtilis gnt operon. J Biochem 113:665–671
    [Google Scholar]
  41. Neiman A. M. 1993; Conservation and reiteration of a kinase cascade. Trends Genet 9:390–394
    [Google Scholar]
  42. Nguyen C. C., Saier M. H. Jr 1996; Phylogenetic characterization of the LacI-GalR family of bacterial transcription factors. FEBS Lett in press
    [Google Scholar]
  43. Nihashi J.-L., Fujita Y. 1984; Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in Bacillus subtilis. Biochim Biophys Acta 798:88–95
    [Google Scholar]
  44. Postma P. W., Lengeier J. W., Jacobson G. R. 1993; Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  45. Pullen K., Rajagopal P., Branchini B. R., Huffine M. E., Reizer J., Saier M. H. Jr, Scholtz M. J., Klevit R. E. 1995; Effects of phosphorylation of a serine on the structure and stability of histidine-containing protein in solution. Prot Sci 4:2478–2486
    [Google Scholar]
  46. Ramseier T. M., Negre D., Cortay J.-C., Scarabel M., Cozzone A. J., Saier M. H. Jr 1993; In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol 234:28–44
    [Google Scholar]
  47. Ramseier T. M., Bledig S., Michotey V., Feghali R., Saier M. H. Jr 1995a; The global regulatory protein, FruR, controls the direction of carbon flow in enteric bacteria. Mol Microbiol 16:1157–1169
    [Google Scholar]
  48. Ramseier T. M., Reizer J., Kuster E., Hillen W., Saier M. H. Jr 1995b; In vitro binding of the CcpA protein of Bacillus megaterium to ^-acting catabolite responsive elements (CREs) of Gram-positive bacteria. FEMS Microbiol Lett 129:207–214
    [Google Scholar]
  49. Reizer A., Deutscher J., Saier M. H. Jr, Reizer J. 1991; Analysis of the gluconate (gnt) operon of Bacillus subtilis. Mol Microbiol 5:1081–1089
    [Google Scholar]
  50. Reizer J., Panos C. 1980; Regulation of β-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Proc Natl Acad Sci USA 77:5497–5501
    [Google Scholar]
  51. Reizer J., Novotny M. J., Panos C., Saier M. H. Jr 1983; Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP. J Bacteriol 156:354–361
    [Google Scholar]
  52. Reizer J., Novotny M. J., Hengstenberg W., Saier M. H. Jr 1984; Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J Bacteriol 160:333–340
    [Google Scholar]
  53. Reizer J., Deutscher J., Sutrina S., Thompson J., Saier M. H. Jr 1985; Sugar accumulation in Gram-positive bacteria: exclusion and expulsion mechanisms. Trends Biochem Sci 1:32–35
    [Google Scholar]
  54. Reizer J., Peterkofsky A., Romano A. H. 1988a; Evidence for the presence of heat-stable protein (HPr) and ATP-dependent HPr kinase in heterofermentative lactobacilli lacking phosphoenolpyruvate : glucose phosphotransferase activity. Proc Natl Acad Sci USA 85:2041–2045
    [Google Scholar]
  55. Reizer J., Saier M. H. Jr, Deutscher J., Grenier F., Thompson J., Hengstenberg W. 1988b; The phosphoenolpyruvate: sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism and regulation. CRC Crit Rev Microbiol 15:297–338
    [Google Scholar]
  56. Reizer J., Sutrina S. L., Saier M. H. Jr, Stewart G. C., Peterkofsky A., Reddy P. 1989a; Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate: sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J 8:2111–2120
    [Google Scholar]
  57. Reizer J., Deutscher J., Saier M. H. Jr 1989b; Metabolite-sensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in Gram-positive bacteria. Biochemie 71:989–996
    [Google Scholar]
  58. Reizer J., Sutrina S. L., Wu L.-F., Deutscher J., Reddy P., Saier M. H. Jr 1992; Functional interactions between proteins of the phosphoenolpyruvate: sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J Biol Chem 267:9158–9169
    [Google Scholar]
  59. Reizer J., Hoischen C., Reizer A., Pham T. N., Saier M. H. Jr 1993a; Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Prot Sci 2:506–521
    [Google Scholar]
  60. Reizer J., Romano A. H., Deutscher J. 1993b; The role of phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, in the regulation of carbon metabolism in Gram-positive bacteria. J Cell Biochem 51:19–24
    [Google Scholar]
  61. Reizer J., Reizer A., Saier M. H. Jr 1994; A functional superfamily of sodium/solute symporters. Biochim Biophys Acta 1197:133–166
    [Google Scholar]
  62. Romano A. H., Trifone J. D., Brustolon M. 1979; Distribution of the phosphoenolpyruvate: glucose transport system in fermentative bacteria. J Bacteriol 139:93–97
    [Google Scholar]
  63. Romano A. H., Brino G., Peterkofsky A., Reizer J. 1987; Regulation of β-galactoside transport and accumulation in heterofermentative lactic acid bacteria. J Bacteriol 169:5589–5596
    [Google Scholar]
  64. Romano A. H., Saier M. H. Jr, Harriott O. T., Reizer J. 1990; Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate: sugar phosphotransferase system in Enterococcus faecalis. J Bacteriol 172:6741–6748
    [Google Scholar]
  65. Russell J. B. 1990; Low-affinity, high-capacity system of glucose transport in the ruminal bacterium Streptococcus bovis: evidence for a mechanism of facilitated diffusion. Appl Environ Microbiol 56:3304–3307
    [Google Scholar]
  66. Rygus T., Hillen W. 1992; Catabolite repression of the xyl operon in Bacillus megaterium. J Bacteriol 174:3049–3055
    [Google Scholar]
  67. Saier M. H. Jr 1985 Mechanisms and Regulation of Carbohydrate Transport in Bacteria New York: Academic Press;
    [Google Scholar]
  68. Saier M. H. Jr 1989; Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53:109–120
    [Google Scholar]
  69. Saier M. H. Jr 1991; Mechanisms of carbohydrate transport in bacteria and comparisons with those in eukaryotes. The Structure of Biological Membranes833–890 Edited by Yeagle P. L. Boca Raton, FL: CRC Press;
    [Google Scholar]
  70. Saier M. H. Jr 1993; Regulatory interactions involving the proteins of the phospho-transferase system in enteric bacteria. J Cell Biochem 51:62–68
    [Google Scholar]
  71. Saier M. H. Jr 1994; Bacterial protein kinases that recognize tertiary rather than primary structure. Res Microbiol 145:647–650
    [Google Scholar]
  72. Saier M. H. Jr, Chin M. 1990; Energetics of the bacterial phosphotransferase system in sugar transport and the regulation of carbon metabolism. Bacterial Energetics (The Bacteria: a Treatise on Structure and Function vol. 12)273–299 Edited by Krulwich T. A. New York: Academic Press;
    [Google Scholar]
  73. Saier M. H. Jr, Reizer J. 1994; The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol 13:755–764
    [Google Scholar]
  74. Saier M. H. Jr, Simoni R. D. 1976; Regulation of carbohydrate uptake in Gram-positive bacteria. J Biol Chem 251:893–894
    [Google Scholar]
  75. Saier M. H. Jr, Reizer J., Deutscher J. 1992; Protein phosphorylation and the regulation of sugar transport in Gram-negative and Gram-positive bacteria. Adenine Nucleotides in Cellular Energy Transfer and Signal Transduction181–190 Edited by Papa S., Azzi A., Tager J. M. Basel: Birkhauser Verlag;
    [Google Scholar]
  76. Saier M. H. Jr, Ramseier T. M., Reizer J. 1995a; Regulation of carbon utilization. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn.. Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology; in press
    [Google Scholar]
  77. Saier M. H. Jr, Chauvaux S., Deutscher J., Reizer J., Ye J.-J. 1995b; Protein phosphorylation and the regulation of carbon metabolism: comparisons in Gram-negative versus Gram-positive bacteria. Trends Biochem Sci 20:267–271
    [Google Scholar]
  78. Saier M. H. Jr, Ye J.-J., Klinke S., Nino E. 1996; Identification of an anaerobically-induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium, Lactobacillus brevis. J Bacteriol 178:314–316
    [Google Scholar]
  79. Sizemore C, Wieland B., Gotz F., Hillen W. 1992; Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. Bacteriol 174:3042–3048
    [Google Scholar]
  80. Stewart G. C. 1993; Catabolite repression in the Gram-positive bacteria: generation of negative regulators of transcription. J Cell Biochem 51:25–28
    [Google Scholar]
  81. Stone M. J., Fairbrother W. J., Palmer A. G. III, Reizer J., Saier M. H. Jr, Wright P. E. 1992; The backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry 31:4394–4406
    [Google Scholar]
  82. Sutrina S., Reizer J., Saier M. H. Jr 1988; Inducer expulsion in Streptococcus pyogenes: properties and mechanism of the efflux reaction. J Bacteriol 170:1874–1877
    [Google Scholar]
  83. Sutrina S., Reddy P., Saier M. H. Jr, Reizer J. 1990; The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265:18581–18589
    [Google Scholar]
  84. Thompson J., Chassy B. M. 1983; Intracellular hexose-6-phosphate:phospho-hydrolase from Streptococcus lactis: purification, properties, and function. J Bacteriol 156:70–80
    [Google Scholar]
  85. Thompson J., Saier M. H. Jr 1981; Regulation of methyl-β-d-thiogalacto-pyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms. J Bacteriol 146:885–894
    [Google Scholar]
  86. Titgemeyer F., Walkenhorst J., Cui X., Reizer J., Saier M. H. Jr 1994; Proteins of the phosphoenolpyruvate: sugar phosphotransferase system in Streptomyces: possible involvement in the regulation of antibiotic production. Res Microbiol 145:89–92
    [Google Scholar]
  87. Titgemeyer F., Walkenhorst J., Reizer J., Stuiver M. H., Cui X., Saier M. H. Jr 1995; Identification and characterization of phosphoenolpyruvate: fructose phosphotransferase systems in three Streptomyces species. Microbiology 141:51–58
    [Google Scholar]
  88. Vadeboncoeur C, Brochu D., Reizer J. 1991; Quantitative determination of the intracellular concentration of the various forms of HPr, a phosphocarrier protein of the phosphoenolpyruvate : sugar phosphotransferase system in growing cells of oral streptococci. Anal Biochem 196:24–30
    [Google Scholar]
  89. Vartak N. B., Reizer J., Reizer A., Gripp J. T., Groisman E. A., Wu L-F., Tomich J. M., Saier M. H. Jr 1991; Sequence and evolution of the FruR protein of Salmonella typhimurium: a pleiotropic transcriptional regulatory protein possessing both activator and repressor functions which is homologous to the periplasmic ribose-binding protein. Res Microbiol 142:951–963
    [Google Scholar]
  90. Weickert M. J., Adhya S. 1992; A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 267: 1586915874
    [Google Scholar]
  91. Wills C. 1990; Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 25:245–280
    [Google Scholar]
  92. Wittekind M., Reizer J., Deutscher J., Saier M. H. Jr, Klevit R. E. 1989; Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution. Biochemistry 28:9908–9912
    [Google Scholar]
  93. Wittekind M., Reizer J., Klevit R. E. 1990; Sequence-specific ·H NMR resonance assignments of Bacillus subtilis HPr: use of spectra obtained from mutants to resolve spectral overlap. Biochemistry 29:7191–7200
    [Google Scholar]
  94. Wittekind M., Rajagopal P., Branchini B. R., Reizer J., Saier M. H. Jr, Klevit R.E. 1992; Solution structure of the phosphocarrier protein HPr from Bacillus subtilis by two-dimensional NMR spectroscopy. Prot Sci1363–1376
    [Google Scholar]
  95. Ye J.-J., Saier M. H. Jr 1995a; Cooperative binding of lactose and HPr(ser-P) to the lactose: H+ symport permease of Lactobacillus brevis. Proc Natl Acad Sci USA 92:417–421
    [Google Scholar]
  96. Ye J.-J., Saier M. H. Jr 1995b; Allosteric regulation of the glucose: H+ symporter of Lactobacillus brevis: cooperative binding of glucose and HPr(ser-P). J Bacteriol 111:1900–1902
    [Google Scholar]
  97. Ye J.-J., Saier M. H. Jr 1995c; Purification and characterization of a small membrane-associated sugar-phosphate phosphatase that is allosterically activated by HPr(ser-P) of the phosphotransferase system Lactococcus lactis. J Biol Chem 270:16740–16744
    [Google Scholar]
  98. Ye J.-J., Reizer J., Cui X., Saier M. H. Jr 1994a; ATP-dependent phosphorylation of serine in HPr regulates lactose: H+ symportLactobacillus brevis. Proc Natl Acad Sci USA 91:3102–3106
    [Google Scholar]
  99. Ye J.-J., Reizer J., Cui X., Saier M. H. Jr 1994b; Inhibition of the phosphoenolpyruvate: lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lacto coccus lactis by ATP-dependent metabolite-activated phosphorylation of serine-46 in the phosphocarrier protein HPr. J Biol Chem 269:11837–11844
    [Google Scholar]
  100. Ye J.-J., Neal J. W., Cui X., Reizer J., Saier M. H. Jr 1994c; Regulation of the glucose :H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis. J Bacteriol 176:3484–3492
    [Google Scholar]
  101. Ye J. J., Reizer J., Saier M. H. Jr 1994d; Regulation of 2deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system. Microbiology 140:3421–3429
    [Google Scholar]
  102. Ye J.-J., Minarcik J. R., Saier M. H. Jr 1996; Inducer expulsion and the occurrence of an HPr(ser-P)-activated sugar-P phosphatase in Enterococcus faecalis and Streptococcus pyogenes. Microbiology142 in press
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-2-217
Loading
/content/journal/micro/10.1099/13500872-142-2-217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error