1887

Abstract

Conjugational mobilization of a PAO1 cosmid bank (in pMMB33) into a pyoverdine-deficient () mutant harbouring a mutation in the 47 min region of the chromosome yielded one clone which restored yellow-green pigmentation and fluorescence when grown on iron-deficient medium. The relevant pMMB33-derivative cosmid, pPYP17, contained a 15.1 kb insert which was subcloned into pKT240 as a 10.8 kb Sacl-Clal fragment conferring the same phenotype. This derivative, pPYP180, like pPYP17, also conferred an apparent wild-type phenotype on mutants previously shown to map genetically in the 23 min region of the PAO chromosome. Physical mapping indicated that the cloned DNA fragment is located at the 66-70 min region of the PAO chromosome, demonstrating that the restored apparent wild-type phenotype observed for the transconjugants was not the result of a true gene complementation. A gene interruption was obtained by replacing a 0.6 kb ll-ll region of pPYP180 necessary for the expression of the pigmentation/fluorescence phenotype, by a Hg interposon (ΩHg). After conjugational transfer and introduction of the mutagenized fragment into the PAO1 chromosome by gene replacement, pyoverdine-deficient mutants were recovered, indicating that the fragment indeed contained at least one gene involved in pyoverdine synthesis. The yellow-green fluorescent compound produced by such cells harbouring plasmids pPYP17 or pPYP180 differed from pyoverdine in several aspects and was consequently named pseudoverdine. Although pseudoverdine was able to complex iron, it was unable to restore growth to mutants in the presence of the iron chelator ethylenediamine di(o-hydroxyphenylacetic acid), or to mediate iron uptake into PAO1. Pseudoverdine lacked a peptide chain but possessed spectral properties similar to pyoverdine, suggesting that it was structurally related to the chromophore of the pyoverdine molecule. The recent structural determination of pseudoverdine as a coumarin derivative confirmed this view and sheds some light on the biosynthetic pathway of the pyoverdine chromophore.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-5-1181
1996-05-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/5/mic-142-5-1181.html?itemId=/content/journal/micro/10.1099/13500872-142-5-1181&mimeType=html&fmt=ahah

References

  1. Ankenbauer R., Sriyosachati S., Cox C.D. Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin. Infect Immun 1985; 49:132–140
    [Google Scholar]
  2. Ankenbauer R., Hanne L.F., Cox C.D. Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production. J Bacteriol 1986; 167:7–11
    [Google Scholar]
  3. Bagdasarian M.M., Amann E., Lurz R., Rückert B., Bagdasarian M. Activity of the hybrid trp-lac (tac) promoter of Escherichia colt in Pseudomonas putida Construction of broad-host-range, controlled-expression vectors. Gene 1983; 26:273–282
    [Google Scholar]
  4. Bagg A., Neilands J.B. Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 1987; 26:5471–5477
    [Google Scholar]
  5. Briskot G., Taraz K., Budzikiewicz H. Pyoverdin-type siderophores from Pseudomonas aeruginosa. Eiebigs Ann Chem 1989375–384
    [Google Scholar]
  6. Budzikiewicz H. Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rep 1993; 104:209–228
    [Google Scholar]
  7. Chesney R.H., f Scott J.R., Vapnek D. Integration of the plasmid prophages PI and P7 into the chromosome of Escherichia coli. J Mol Biol 1979; 130:161–173
    [Google Scholar]
  8. Clewell D.B., Helinski D.R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an open circular DNA form. Proc Natl Acad Sei USA 1969; 62:1159–1166
    [Google Scholar]
  9. Cornelis P., Hohnadel D., Meyer J.M. Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains. Infect Immun 1989; 57:3491–3497
    [Google Scholar]
  10. Cox C.D., Rinehart K.L., Moore M.L., Cook J.C. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sei USA 1981; 78:4256–4260
    [Google Scholar]
  11. Fellay R., Frey J., Krisch H. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 1987; 52:147–154
    [Google Scholar]
  12. Frey J., Bagdasarian M., Feiss D., Franklin F.C., Deshusses J. Stable cosmid vectors that enable the introduction of cloned fragments into a wide range of Gram-negative bacteria. Gene 1983; 24:299–308
    [Google Scholar]
  13. Fukasawa K., Goto M. Biosynthesis of a heterocycle formed by iron-deficient Azotobacter vinelandii strain O. Biochim Biophys Acta 1973; 320:545–548
    [Google Scholar]
  14. Hansen J.B., Olsen R.H. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMGl and pMG5. J Bacteriol 1978; 135:227–238
    [Google Scholar]
  15. Hohnadel D. Métabolisme du fer chez Pseudomonas aeruginosa: approche physiologique, biochimique et génétique du système pyoverdine 1988 PhD Thesis, Université Louis Pasteur, Strasbourg;
    [Google Scholar]
  16. Hohnadel D., Meyer J.M. Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J Bacteriol 1988; 170:4865–4873
    [Google Scholar]
  17. Hohnadel D., Haas D., Meyer J.M. Mapping of mutations affecting pyoverdine production in Pseudomonas aeruginosa. FEMS Microbiol Eett 1986; 36:195–199
    [Google Scholar]
  18. Holloway B.W. Genetics of Pseudomonas. Bacteriol Rev 1969; 33:419–443
    [Google Scholar]
  19. Holloway B.W., Matsumoto H. Pseudomonas aeruginosa. In Genetic Maps 1984 1984 Edited by O’Brien S.J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; pp 194–197
    [Google Scholar]
  20. Holloway B.W., Römling U., Tümmler B. Genomic mapping of Pseudomonas aeruginosa PAO. Microbiology 1994; 140:2907–2929
    [Google Scholar]
  21. Jeenes D.J., Soldati L., Baur H., Watson J.M., Mercenier A., Reimmann C., Leisinger T., Haas D. Expression of biosynthetic genes from Pseudomonas aeruginosa and Escherichia coli in the heterologous host. Mol Gen Genet 1986; 203:421–429
    [Google Scholar]
  22. Kreike C.M., De Koning J.R.A., Krem F.A. Non radioactive detection of single-copy DNA-DNA hybrids. Plant Mol Biol Rep 1990; 8:172–179
    [Google Scholar]
  23. Leong J. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 1986; 24:187–209
    [Google Scholar]
  24. Longerich I., Taraz K., Budzikiewicz H., Tsai L., Meyer J.-M. Pseudoverdin, a compound related to the pyoverdine chromophore from a Pseudomonas aeruginosa strain incapable to produce pyoverdins. Z Naturforsch 1993; 48:425–429
    [Google Scholar]
  25. Loper J.E., Orser C.S., Panopoulos N.J., Schroth M.N. Genetic analysis of fluorescent pigment production in Pseudomonas syringae pv syringae. J Gen Microbiol 1984; 130:1507–1515
    [Google Scholar]
  26. Magazin M.D., Moores J.C., Leong J. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas strain. J Biol Chem 1986; 261:795–799
    [Google Scholar]
  27. Marugg J.D., Van Spanje M., Hoekstra W.P.M., Schippers B., Weisbeek P.J. Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. J Bacteriol 1985; 164:563–570
    [Google Scholar]
  28. Marugg J.D., Nielander H.B., Horrevoets A.J.G., Van Megen I., Van Genderen I., Weisbeek P.J. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358. J Bacteriol 1988; 170:1812–1819
    [Google Scholar]
  29. Marugg J.D., De Weger L.A., Nielander H.B., Oorthuizen M., Recourt K., Lugtenberg B., Van Der Hofstadt G.A.J., M. & Weisbeek P.J. Cloning and characterization of a gene encoding an outer membrane protein required for siderophore-mediated uptake of Fe3+ in Pseudomonas putida WCS358. J Bacteriol 1989; 171:2819–2826
    [Google Scholar]
  30. Merriman T.R., Merriman M.E., Lamont I.L. Nucleotide sequence ofpvdD, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases. J Bacteriol 1995; 177:252–258
    [Google Scholar]
  31. Meyer J.M., Abdallah M.A. The fluorescent pigment of Pseudomonas fluorescens, biosynthesis, purification and physicochemical properties. J Gen Microbiol 1978; 107:319–328
    [Google Scholar]
  32. Meyer J.M., Hallé F., Hohnadel D., Lemanceau P., Ratefiarivelo H. Siderophores of Pseudomonas - biological properties. In Iron Transport in Microbes 1987 Edited by Winkelmann G., Van Der Helm D., Neilands J.B. Weinheim: VCH Verlagsgesellschaft; Plants and Animals, pp 188–205
    [Google Scholar]
  33. Meyer J.M., Hohnadel D., Khan A., Cornelis P. Pyoverdin-facilitated iron uptake in Pseudomonas aeruginosa: immunological characterization of the ferripyoverdin receptor. Mol Microbiol 1990; 4:1401–1405
    [Google Scholar]
  34. Michels J., Benoni H., Briskot G., Lex J., Schmickler H., Taraz K., Budzikiewicz H., Korth H., Pulverer G. Isolation and spectroscopic characterization of the pyoverdin chromophore and of its 5-hydroxy analogue. Z Naturforsch 1991; 46c:993–1000
    [Google Scholar]
  35. Moores J.C., Magazin M., Ditta G.S., Leong J. Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain. J Bacteriol 1984; 157:53–58
    [Google Scholar]
  36. Nowak-Thomson B., Gould S.J. Biosynthesis of the pseudobactin chromophore from tyrosine. Tetrahedron 1994; 50:9865–9872
    [Google Scholar]
  37. O'Hoy K., Krishnapillai V. Recalibration of the Pseudomonas aeruginosa PAO strain chromosome map in time units using high-frequency-of-recombination donors. Genetics 1987; 115:611–618
    [Google Scholar]
  38. O'Sullivan D.J., Morris J., O'Gara F. Identification of an additional ferric-siderophore uptake gene clustered with receptor, biosynthesis and/w-like regulatory genes in fluorescent Pseudomonas sp. strain Ml 14. Appl Environ Microbiol 1990; 56:2056–2064
    [Google Scholar]
  39. Poole K., Heinrichs D.E., Neshat S. Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Mol Microbiol 1993a; 10:529–544
    [Google Scholar]
  40. Poole K., Neshat S., Krebes K., Heinrichs D.E. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J Bacteriol 1993b; 175:4597–4604
    [Google Scholar]
  41. Pouwels P.H., Enger-Volk B.E., Brammar W.J. 1985) eds Cloning Vectors. A Eaboratory Manual Amsterdam: Elsevier;
    [Google Scholar]
  42. Prince R.W., Cox C.D., Vasil M.L. Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 1993; 175:2589–2598
    [Google Scholar]
  43. Ratnaningsih E., Darmsthiti S., Krishnapillai V., Morgan A., Sinclair M., Holloway B.W. A combined physical and genetic map of Pseudomonas aeruginosa PAO. J Gen Microbiol 1990; 136:2351–2357
    [Google Scholar]
  44. Rella M., Mercenier A., Haas D. Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Gene 1985; 33:293–303
    [Google Scholar]
  45. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Simon R., Priefer U., Pllhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1983; 1:784–791
    [Google Scholar]
  47. Simon R., O'Connell M., Labes M., Pühler A. Plasmid vectors for the genetic analysis and manipulation of Rhizobia and other Gram-negative bacteria. Methods Enzymol 1986; 118:640–659
    [Google Scholar]
  48. Southern E. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517
    [Google Scholar]
  49. Tsuda M., Miyazaki H., Nakazawa T. Genetic and physical mapping of genes involved in pyoverdin production in Pseudomonas aeruginosa PAO. J Bacteriol 1995; 177:423–431
    [Google Scholar]
  50. Visca P., Ciervo A., Orsi N. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine lV5-oxvgenase in Pseudomonas aeruginosa. J Bacteriol 1994; 176:1128–1140
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-5-1181
Loading
/content/journal/micro/10.1099/13500872-142-5-1181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error