1887

Abstract

The study of the intra-specific phylogenetic structure of is essential to understand the participation of several strains in malo-lactic fermentation (MLF). RFLP of the PCR-amplified 16S–23S rDNA intergenic spacer region (ISR) was performed in and other related species. The RFLP patterns with seven endonucleases were identical for the 37 strains, but differed from those obtained for all other species tested. This method could provide an invaluable insight for molecular identification of the wine leuconostocs. The RFLP relationships of members of the genera and were highly similar to those previously reported by 16S and 23S rRNA sequencing studies. The 16S–23S rDNA ISR was sequenced in five strains of A single tRNA was detected. The ISR sequence seems to be identical in the two rRNA () operons found in and no significant sequence variation was observed between strains that revealed relative differences as previously shown by PFGE. Results from the present study demonstrated that is phylogenetically a very homogeneous species (according to DNA-DNA hybridization studies) and sustain that this species is different from the genus . The extremely conserved ISR of these organisms suggests that strains currently isolated and characterized must have spread with the transfer of viticulture rather than coming from indigenous populations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-8-2105
1996-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/8/mic-142-8-2105.html?itemId=/content/journal/micro/10.1099/13500872-142-8-2105&mimeType=html&fmt=ahah

References

  1. Bacot C.M., Reeves R.H. 1991; Novel tRNA gene organization in the 16S–23S intergenic spacer of the Streptococcus pneumoniae rRNA gene cluster. J Bacterial 173:4234–4236
    [Google Scholar]
  2. Barry T., Colleran G., Glennon M.M., Dunican L.K., Gannon F. 1991; The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl 1:51–56
    [Google Scholar]
  3. Beelman R.B, Gavin A. III Keen R.M. 1977; A new strain of Leuconostoc oenos for induced malo-lactic fermentation in eastern wines. Am J Enol Vitic 28:159–165
    [Google Scholar]
  4. Brosius J., Palmer J.L, Kennedy H.P., Noller H.F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 754801–4805
    [Google Scholar]
  5. Brosius J., Dull T.J., Noller H.F. 1980; Complete nucleotide sequence of a 23 S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 77201–204
    [Google Scholar]
  6. Cartwright C.P., Stock F., Beekmann S.E., Williams E.C., Gill V.J. 1995; PCR amplification of rRNA intergenic spacer region as a method for epidemiologic typing of Clostridium difficile . J Clin Microbiol 33:184–187
    [Google Scholar]
  7. Chiaruttini C., Milet M. 1993; Gene organization, primary structure and RNA processing analysis of a ribosomal RNA operon in Lactococcus lactis . J Mol Biol 230:57–76
    [Google Scholar]
  8. Collins M.D., Samelis J., Metaxopoulos J., Wallbanks S. 1993; Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostocparamesenteroides group of species. J ApplBacteriol 5:595–603
    [Google Scholar]
  9. Dicks L.M.T., van Vuuren H.J.J., Dellagllo F. 1990; Taxonomy of Leuconostoc species, particularly Leuconostoc oenos, as revealed by numerical analysis of total soluble cell protein patterns, DNA base compositions and DNA-DNA hybridizations. Int J Sjst Bacteriol 40:83–91
    [Google Scholar]
  10. Dicks L.M.T., Dellaglio F., Collins M.D. 1995a; Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 45:395–397
    [Google Scholar]
  11. Dicks L.M.T., Loubser P.A., Augustyn O.P.H. 1995b; Identification of Leuconostoc oenos from South African fortified wines by numerical analysis of total soluble cell protein patterns and DNA-DNA hybridizations. J Appl Bacteriol 79:43–48
    [Google Scholar]
  12. Dolzani L., Tonin E., Lagatolla C., Monti-Bragadin C. 1994; Typing of Staphylococcus aureus by amplification of the 16S–23S rRNA intergenic spacer sequences. FEMS Microbiol Lett 119:167–174
    [Google Scholar]
  13. Farrow J.A.E., Facklan R.R., Collins M.D. 1989; Nucleic acid homologies of some vancomycin-resistant leuconostocs and description of Leuconostoc citreum sp. nov. and Leuconostoc pseudo- mesenteroides sp. nov. Int J Syst Bacteriol 39:279–283
    [Google Scholar]
  14. Feingold J., Bellofatto V., Shapiro L, Amemiya K. 1985; Organization and nucleotide sequence analysis of an rRNA and tRNA gene cluster from Caulobacter crescentus . J Bacteriol 163:155–166
    [Google Scholar]
  15. Fleet G.H., Lafon-Laforcade S., Ribéreau-Gayon P. 1984; Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl Environ Microbiol 48:1034–1038
    [Google Scholar]
  16. Garvie E.I. 1967; Leuconostoc oenos sp. nov. J Gen Microbiol 48:431–438
    [Google Scholar]
  17. Garvie E.I. 1969; Lactic dehydrogenases of strains of the genus Leuconostoc . J Gen Microbiol 58:85–94
    [Google Scholar]
  18. Garvie E.I. 1976; Hybridization between the deoxyribonucleic acids of some strains of heterofermentative lactic acid bacteria. Inf J Syst Bacteriol 26:116–122
    [Google Scholar]
  19. Garvie E.I. 1981; Sub-divisions within the genus Leuconostoc as shown by RNA/DNA hybridization. J Gen Microbiol 127:209–212
    [Google Scholar]
  20. Garvie E.I. 1986; Genus Leuconostoc. . In Bergej‘s Manual of Systematic Bacteriology 2 pp. 1071–1075 Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Garvie E.I., Farrow J.A.E. 1980; The differentiation of Leuconostoc oenos from non-acidophilic species of Leuconostoc , and the identification of five strains from the American Type Culture Collection. Am J Enol Vitic 31:154–157
    [Google Scholar]
  22. van der Giessen J.W.B., Haring R.M., Van der Zeijst B.A.M. 1994; Comparison of the 23S ribosomal RNA genes and the spacer region between the 16S and 23S rRNA genes of the closely related Mycobacterium avium and Mycobacterium paratuberculosis and the fast-growing Mycobacterium phlei . Microbiology 140:1103–1108
    [Google Scholar]
  23. Gürtler V., Barrie H.D. 1995; Typing of Staphylococcus aureus strains by PCR-amplification of variable-length 16S–23S rDNA spacer regions: characterization of spacer sequences. Microbiology 141:1255–1265
    [Google Scholar]
  24. Hall L.M.C. 1994; Are point mutations or DNA rearrangements responsible for the restriction fragment length polymorphisms that are used to type bacteria?. Microbiology 140:197–204
    [Google Scholar]
  25. Harvey S., Hill C.W., Squires C., Squires C.L. 1988; Loss of the spacer loop sequence from the rrnB operons in the Escherichia coli K-12 subline that bears the relA1 mutation. J Bacteriol 170:1235–1238
    [Google Scholar]
  26. Hofman J.D., Lau R.H., Doolittle W.F. 1979; The number, physical organization and transcription of ribosomal RNA cistrons in an archaebacterium: Halobacterium halobium . Nucleic Acids Res 7:1321–1333
    [Google Scholar]
  27. Hontebeyrie M., Gasser F. 1977; Deoxyribonucleic acid homologies in the genus Leuconostoc. Int J Syst Bacteriol 27:9–14
    [Google Scholar]
  28. Jensen M.A., Webster J.A., Straus N. 1993; Rapid identification of bacteria on the basis of polymerase chain reaction- amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952
    [Google Scholar]
  29. Kostman J.R., Edlind T.D., LiPuma J.J., Stull T.L. 1992; Molecular epidemiology of Pseudomonas cepacea determined by polymerase chain reaction ribotyping. J Clin Microbiol 30:2048–2087
    [Google Scholar]
  30. Krawiec S., Riley M. 1990; Organization of the bacterial chromosome. Microbiol Rev 54:502–539
    [Google Scholar]
  31. Kunkee R.E. 1991; Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol Rev 88:55–72
    [Google Scholar]
  32. Leblond-Bourget N., Philippe H., Mangin I., Decaris B. 1996; 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 46:102–111
    [Google Scholar]
  33. Loughney K., Lund E., Dahlberg J.E. 1982; tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis . Nucleic Acids Res 10:1607–1624
    [Google Scholar]
  34. Martínez-Murcia A.J., Collins M.D. 1990; A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 70:73–84
    [Google Scholar]
  35. Martfnez-Murcia A.J., Collins M.D. 1991; A phylogenetic analysis of an atypical leuconostoc: description of Leuconostoc fallax sp.nov. FEMS Microbiol Lett 82:55–60
    [Google Scholar]
  36. Martínez-Murcia A.J., Harland N.M., Collins M.D. 1993; Phylogenetic analysis of some leuconostocs and related organisms as determined from large-subunit rRNA gene sequences: assessment of congruence of small- and large-subunit rRNA derived trees. J Appl Bacteriol 74:532–541
    [Google Scholar]
  37. Matar G.M., Swaminathan B., Hunter S.B., Slater L.N., Welch D.F. 1993; Polymerase chain reaction-based restriction fragment length polymorphism analysis of a fragment of the ribosomal operon from Rochalimaea species for subtyping. J.Clin Microbiol 31:1730–1734
    [Google Scholar]
  38. Mevarech M., Hirschtwizer S., Goldman S., Yakobsson E., Eisenberg H., Dennis P.P. 1989; Isolation and characterization of the rRNA gene clusters of Halobacterium marismortui . J Bacteriol 171:3479–3485
    [Google Scholar]
  39. Navarro E., Simonet P., Normand P., Bardin R. 1992; Characterization of natural populations of Nitrobacter spp.using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol 157:107–115
    [Google Scholar]
  40. Neefs J.M., Van de Peer Y., Hendriks L., DeWachter R. 1990; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18: suppl. 2237–2318
    [Google Scholar]
  41. Peynaud E., Domercq S. 1968; Etude de quatre cents souches de conques heterolactiques isoles de vins. Ann Inst Pasteur 19:159–169
    [Google Scholar]
  42. Regnery R.L., Spruill C.L., Plakaytis B.D. 1991; Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173:1576–1589
    [Google Scholar]
  43. Rossi J., Costamagna L., Cleventi F. 1978; La flora malolactica in alcuni vini delNtalia centrole. Ann Fac Agrar Univ Stud Perugia 33:187–196
    [Google Scholar]
  44. Sambrook J., Fritsch E.F., Maniatis M. 1989 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Sanger F., Nicklen S., Coulsen A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  46. Sawada M., Muto A., Iwauni M., Yamao F., Osawa S. 1984; Organization of ribosomal RNA genes in Mycoplasma capricolum . Mol Gen Genet 196:311–316
    [Google Scholar]
  47. Schillinger U., Holzapfel W., Kandler O. 1989; Nucleic acid hybridization studies on Leuconostoc and heterofermentative lactobacilli and description of Leuconostoc amelibiosum sp.nov. Syst Appl Microbiol 12:48–55
    [Google Scholar]
  48. Sechi L.A., Daneo-Moore L. 1993; Characterization of intergenic spacers in two rrn operons of Enterococcus hirae ATCC 9790. J Bacteriol 175:3212–3219
    [Google Scholar]
  49. Sela S., Clark-Curtis J.E., Bercovier H. 1989; Characterization and taxonomic implications of the rRNA genes of Mycobacterium leprae . J Bacteriol 17:70–73
    [Google Scholar]
  50. Shaw B.G., Harding C.D. 1989; Leuconostocgelidum sp.nov.and Leuconostoc carnosum sp.nov.from chill-stored meats. Int J Syst Bacteriol 39:217–223
    [Google Scholar]
  51. Southern E.M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517
    [Google Scholar]
  52. Susuki Y., Yoshinaga K., Ono Y., Nagata A., Yamada T. 1987; Organization of rRNA genes in Mycobacterium bovis BCG. J Bacterial 169:839–843
    [Google Scholar]
  53. Tenreiro R., Santos M.A., Paveia H., Vieira G. 1994; Interstrain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J Appl Bacteriol 77:271–280
    [Google Scholar]
  54. Tracey R.P., Britz T.J. 1987; A numerical taxonomy study of Leuconostoc oenos strains from wine. J Appl Bacteriol 63:523–532
    [Google Scholar]
  55. Tracey R.P., Britz T.J. 1989; Cellular fatty acid composition of Leuconostoc oenos . J Appl Bacteriol 66:445–456
    [Google Scholar]
  56. Uemori T., Asada K., Kato I., Harasawa R. 1992; Amplification of the 16S–23S spacer region in rRNA operons of Mycoplasmas by the polymerase chain reaction. Syst Appl Microbiol 15:181–186
    [Google Scholar]
  57. Vilgalys R., Hester M. 1990; Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246
    [Google Scholar]
  58. de Wit M.Y.L., Klatser P.R. 1994; Mycobacterizlm leprae isolates from different sources have identical sequences of the spacer region between the 16s and 23s ribosomal RNA genes. Microbiology 140:1983–1987
    [Google Scholar]
  59. Yang D., Woese C.R. 1989; Phylogenetic structure of the ‘ Leuconostocs ’: an interesting case of a rapidly evolving organism. Syst Appl Microbiol 12:145–149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-8-2105
Loading
/content/journal/micro/10.1099/13500872-142-8-2105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error