1887

Abstract

Cyclic-di-GMP is an ubiquitous second messenger in bacteria. Several c-di-GMP receptor proteins have been identified to date, and downstream signalling pathways are often mediated through protein–protein interactions. The photoreceptor Cph2 from the cyanobacterium sp. PCC 6803 comprises three domains related to c-di-GMP metabolism: two GGDEF and one EAL domain. It has been shown that the C-terminal GGDEF domain acts as blue-light triggered c-di-GMP producer thereby inhibiting motility of the cells in blue light. The specific function of the other two c-di-GMP related domains remained unclear. In this study, we test knockout mutants of potential interaction partners of Cph2 for altered phototactic behaviour. Whereas wild-type cells are non-motile under high-intensity red light of 640 nm, the mutant displays positive phototaxis. This phenotype can be complemented by overexpression of full-length Slr1143, which also results in an increased cellular c-di-GMP concentration. However, the non-motile phenotype of wild-type cells under high-intensity red light appears not to be due to an elevated cellular c-di-GMP content. Using co-precipitation and yeast two-hybrid assays, we demonstrate that the GGDEF domain of Slr1143 interacts with the EAL and the GGDEF domains of Cph2. However, under the test conditions, the interaction of the two proteins is not light-dependent. We conclude that Slr1143 is a new Cph2-interacting regulatory factor which modulates motility under red light and accordingly we propose Cip1 (Cph2-interacting protein 1) as a new designation for this gene product.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000475
2017-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/6/920.html?itemId=/content/journal/micro/10.1099/mic.0.000475&mimeType=html&fmt=ahah

References

  1. Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009; 7:263–273 [View Article][PubMed]
    [Google Scholar]
  2. Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1–52 [View Article][PubMed]
    [Google Scholar]
  3. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 1987; 325:279–281 [View Article][PubMed]
    [Google Scholar]
  4. Römling U, Gomelsky M, Galperin MY. C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 2005; 57:629–639 [View Article][PubMed]
    [Google Scholar]
  5. Savakis P, de Causmaecker S, Angerer V, Ruppert U, Anders K et al. Light-induced alteration of c-di-GMP level controls motility of Synechocystis sp. PCC 6803. Mol Microbiol 2012; 85:239–251 [View Article][PubMed]
    [Google Scholar]
  6. Wilde A, Fiedler B, Börner T. The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol Microbiol 2002; 44:981–988 [View Article][PubMed]
    [Google Scholar]
  7. Anders K, von Stetten D, Mailliet J, Kiontke S, Sineshchekov VA et al. Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Synechocystis PCC 6803. Photochem Photobiol 2011; 87:160–173 [View Article][PubMed]
    [Google Scholar]
  8. Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 2009; 7:724–735 [View Article][PubMed]
    [Google Scholar]
  9. Guzzo CR, Salinas RK, Andrade MO, Farah CS. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J Mol Biol 2009; 393:848–866 [View Article][PubMed]
    [Google Scholar]
  10. Yang F, Tian F, Li X, Fan S, Chen H et al. The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence in Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 2014; 27:578–589 [View Article][PubMed]
    [Google Scholar]
  11. Sato S, Shimoda Y, Muraki A, Kohara M, Nakamura Y et al. A large-scale protein-protein interaction analysis in Synechocystis sp. PCC6803. DNA Res 2007; 14:207–216 [View Article][PubMed]
    [Google Scholar]
  12. Rausenberger J, Tscheuschler A, Nordmeier W, Wüst F, Timmer J et al. Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light. Cell 2011; 146:813–825 [View Article][PubMed]
    [Google Scholar]
  13. Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. A light-switchable gene promoter system. Nat Biotechnol 2002; 20:1041–1044 [View Article][PubMed]
    [Google Scholar]
  14. Trautmann D, Voss B, Wilde A, Al-Babili S, Hess WR. Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res 2012; 19:435–448 [View Article][PubMed]
    [Google Scholar]
  15. Ermakova-Gerdes S, Vermaas W. Inactivation of the open reading frame slr0399 in Synechocystis sp. PCC 6803 functionally complements mutations near the QA niche of photosystem II. J Biol Chem 1999; 274:30540–30549 [CrossRef]
    [Google Scholar]
  16. Zinchenko VV, Piven IV, Melnik VA, Shestakov SV. Vectors for the complementation analysis of cyanobacterial mutants. Genetika 1999; 35:228–232
    [Google Scholar]
  17. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979; 111:1–61 [View Article]
    [Google Scholar]
  18. Kuchmina E, Wallner T, Kryazhov S, Zinchenko VV, Wilde A. An expression system for regulated protein production in Synechocystis sp. PCC 6803 and its application for construction of a conditional knockout of the ferrochelatase enzyme. J Biotechnol 2012; 162:75–80 [View Article][PubMed]
    [Google Scholar]
  19. Schuergers N, Nürnberg DJ, Wallner T, Mullineaux CW, Wilde A. PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 2015; 161:960–966 [View Article][PubMed]
    [Google Scholar]
  20. Burhenne H, Kaever V. Quantification of cyclic dinucleotides by reversed-phase LC-MS/MS. Methods Mol Biol 2013; 1016:27–37 [View Article][PubMed]
    [Google Scholar]
  21. Tartof K, Hobbs C. Improved media growing plasmid and cosmid clones. Focus 1987; 9:12
    [Google Scholar]
  22. Chua NH, Bennoun P. Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in photosystem II reaction center. Proc Natl Acad Sci USA 1975; 72:2175–2179 [View Article][PubMed]
    [Google Scholar]
  23. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685 [View Article][PubMed]
    [Google Scholar]
  24. Berkelman TR, Lagarias JC. Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal Biochem 1986; 156:194–201 [View Article][PubMed]
    [Google Scholar]
  25. Kunkel T, Tomizawa K, Kern R, Furuya M, Chua NH et al. In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Eur J Biochem 1993; 215:587–594 [View Article][PubMed]
    [Google Scholar]
  26. Sobotka R, Tichy M, Wilde A, Hunter CN. Functional assignments for the carboxyl-terminal domains of the ferrochelatase from Synechocystis PCC 6803: the CAB domain plays a regulatory role, and region II is essential for catalysis. Plant Physiol 2011; 155:1735–1747 [View Article][PubMed]
    [Google Scholar]
  27. Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 2005; 187:1792–1798 [View Article][PubMed]
    [Google Scholar]
  28. Chen LH, Köseoğlu VK, Güvener ZT, Myers-Morales T, Reed JM et al. Cyclic di-GMP-dependent signaling pathways in the pathogenic firmicute Listeria monocytogenes. PLoS Pathog 2014; 10:e1004301 [View Article][PubMed]
    [Google Scholar]
  29. Ryu MH, Gomelsky M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol 2014; 3:802–810 [View Article][PubMed]
    [Google Scholar]
  30. Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 2017; 15:271–284 [View Article][PubMed]
    [Google Scholar]
  31. Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 2009; 10:2763–2788 [View Article][PubMed]
    [Google Scholar]
  32. Chan C, Paul R, Samoray D, Amiot NC, Giese B et al. Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci USA 2004; 101:17084–17089 [View Article][PubMed]
    [Google Scholar]
  33. Anders K, Daminelli-Widany G, Mroginski MA, von Stetten D, Essen LO. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. J Biol Chem 2013; 288:35714–35725 [View Article][PubMed]
    [Google Scholar]
  34. Anders K, Gutt A, Gärtner W, Essen LO. Phototransformation of the red light sensor cyanobacterial phytochrome 2 from Synechocystis species depends on its tongue motifs. J Biol Chem 2014; 289:25590–25600 [View Article][PubMed]
    [Google Scholar]
  35. Hiltbrunner A, Viczián A, Bury E, Tscheuschler A, Kircher S et al. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 2005; 15:2125–2130 [View Article][PubMed]
    [Google Scholar]
  36. Mancinelli AL. The physiology of phytochrome action. In Kendrick RE, Kronenberg GHM. (editors) Photomorphogenesis in Plants Dordrecht: Kluwer Academic Publishers; 1994 pp. 211–269 [CrossRef]
    [Google Scholar]
  37. Smith H, Holmes MG. The function of phytochrome in the natural environment—III. Measurement, and calculation of phytochrome photo equilibria. Photochem Photobiol 1977; 25:547–550 [View Article]
    [Google Scholar]
  38. Paul R, Abel S, Wassmann P, Beck A, Heerklotz H et al. Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 2007; 282:29170–29177 [View Article][PubMed]
    [Google Scholar]
  39. Agostoni M, Koestler BJ, Waters CM, Williams BL, Montgomery BL. Occurrence of cyclic di-GMP-modulating output domains in cyanobacteria: an illuminating perspective. MBio 2013; 4:e00451-13 [View Article][PubMed]
    [Google Scholar]
  40. Boehm A, Kaiser M, Li H, Spangler C, Kasper CA et al. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 2010; 141:107–116 [View Article][PubMed]
    [Google Scholar]
  41. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 2010; 38:128–139 [View Article][PubMed]
    [Google Scholar]
  42. Huang B, Whitchurch CB, Mattick JS. FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 2003; 185:7068–7076 [View Article][PubMed]
    [Google Scholar]
  43. Navarro MV, de N, Bae N, Wang Q, Sondermann H. Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure 2009; 17:1104–1116 [View Article][PubMed]
    [Google Scholar]
  44. Qi Y, Chuah ML, Dong X, Xie K, Luo Z et al. Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change. J Biol Chem 2011; 286:2910–2917 [View Article][PubMed]
    [Google Scholar]
  45. Ursell T, Chau RM, Wisen S, Bhaya D, Huang KC. Motility enhancement through surface modification is sufficient for cyanobacterial community organization during phototaxis. PLoS Comput Biol 2013; 9:e1003205 [View Article][PubMed]
    [Google Scholar]
  46. Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D et al. C-di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLoS Pathog 2015; 11:e1005068 [View Article][PubMed]
    [Google Scholar]
  47. Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW et al. Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLoS Pathog 2015; 11:e1005232 [View Article][PubMed]
    [Google Scholar]
  48. Wang YC, Chin KH, Tu ZL, He J, Jones CJ et al. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Commun 2016; 7:12481 [View Article][PubMed]
    [Google Scholar]
  49. Hendrick WA, Orr MW, Murray SR, Lee VT, Melville SB. Cyclic di-GMP binding by an assembly ATPase (PilB2) and control of type IV pilin polymerization in the Gram-positive pathogen Clostridium perfringens. J Bacteriol 2017; 199:e00034-17 [View Article][PubMed]
    [Google Scholar]
  50. Cao Z, Livoti E, Losi A, Gärtner W. A blue light-inducible phosphodiesterase activity in the cyanobacterium Synechococcus elongatus. Photochem Photobiol 2010; 86:606–611 [View Article][PubMed]
    [Google Scholar]
  51. Enomoto G, Ni-Ni-Win, Narikawa R, Ikeuchi M. Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation. Proc Natl Acad Sci USA 2015; 112:8082–8087 [View Article][PubMed]
    [Google Scholar]
  52. Enomoto G, Nomura R, Shimada T, Ni-Ni-Win, Narikawa R et al. Cyanobacteriochrome SesA is a diguanylate cyclase that induces cell aggregation in Thermosynechococcus. J Biol Chem 2014; 289:24801–24809 [View Article][PubMed]
    [Google Scholar]
  53. Tschowri N, Busse S, Hengge R. The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev 2009; 23:522–534 [View Article][PubMed]
    [Google Scholar]
  54. Schuergers N, Lenn T, Kampmann R, Meissner MV, Esteves T et al. Cyanobacteria use micro-optics to sense light direction. Elife 2016; 5:1–16 [View Article][PubMed]
    [Google Scholar]
  55. Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP et al. Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci USA 2010; 107:5989–5994 [View Article][PubMed]
    [Google Scholar]
  56. Ryan RP, Dow JM. Intermolecular interactions between HD-GYP and GGDEF domain proteins mediate virulence-related signal transduction in Xanthomonas campestris. Virulence 2010; 1:404–408 [View Article][PubMed]
    [Google Scholar]
  57. Ryan RP, McCarthy Y, Kiely PA, O'Connor R, Farah CS et al. Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris. Mol Microbiol 2012; 86:557–567 [View Article][PubMed]
    [Google Scholar]
  58. Ikeuchi M, Ishizuka T. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci 2008; 7:1159–1167 [View Article][PubMed]
    [Google Scholar]
  59. Kopf M, Klähn S, Scholz I, Matthiessen JK, Hess WR et al. Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 2014; 21:527–539 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000475
Loading
/content/journal/micro/10.1099/mic.0.000475
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error