1887

Abstract

is a Gram-positive, filamentous actinomycete with a complex developmental life cycle. Genomic analysis revealed that encodes a large number of two-component systems (TCSs): these consist of a membrane-bound sensor kinase (SK) and a cognate response regulator (RR). These proteins act together to detect and respond to diverse extracellular signals. Some of these systems have been shown to regulate antimicrobial biosynthesis in species, making them very attractive to researchers. The ability of to sporulate in both liquid and solid cultures has made it an increasingly popular model organism in which to study these industrially and medically important bacteria. Bioinformatic analysis identified 58 TCS operons in with an additional 27 orphan SK and 18 orphan RR genes. A broader approach identified 15 of the 58 encoded TCSs to be highly conserved in 93 species for which high-quality and complete genome sequences are available. This review attempts to unify the current work on TCS in the streptomycetes, with an emphasis on .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000817
2019-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/9/929.html?itemId=/content/journal/micro/10.1099/mic.0.000817&mimeType=html&fmt=ahah

References

  1. Koshland DE. The seven pillars of life. Science 2002; 295:2215 LP–2216
    [Google Scholar]
  2. Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 2006; 188:4169–4182 [View Article]
    [Google Scholar]
  3. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002; 417:141–147 [View Article]
    [Google Scholar]
  4. Nixon BT, Ronson CW, Ausubel FM. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC . Proc Natl Acad Sci USA 1986; 83:7850–7854 [View Article]
    [Google Scholar]
  5. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000; 69:183–215 [View Article]
    [Google Scholar]
  6. Quon KC, Marczynski GT, Shapiro L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 1996; 84:83–93 [View Article]
    [Google Scholar]
  7. Fol M, Chauhan A, Nair NK, Maloney E, Moomey M et al. Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 2006; 60:643–657 [View Article]
    [Google Scholar]
  8. Stephenson K, Hoch JA. Virulence- and antibiotic resistance-associated two-component signal transduction systems of gram-positive pathogenic bacteria as targets for antimicrobial therapy. Pharmacol Ther 2002; 93:293–305 [View Article]
    [Google Scholar]
  9. Groisman EA. Feedback control of two-component regulatory systems. Annu Rev Microbiol 2016; 70:103–124 [View Article]
    [Google Scholar]
  10. Park H, Saha SK, Inouye M. Two-domain reconstitution of a functional protein histidine kinase. Proc Natl Acad Sci U S A 1998; 95:6728–6732 [View Article]
    [Google Scholar]
  11. Tanaka T, Saha SK, Tomomori C, Ishima R, Liu D et al. NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 1998; 396:88–92 [View Article]
    [Google Scholar]
  12. Hopwood DA. Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico . Microbiology 1999; 145:2183–2202 [View Article]
    [Google Scholar]
  13. Bystrykh LV, Fernández-Moreno MA, Herrema JK, Malpartida F, Hopwood DA et al. Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J Bacteriol 1996; 178:2238–2244 [View Article]
    [Google Scholar]
  14. Feitelson JS, Malpartida F, Hopwood DA. Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). Microbiology 1985; 131:2431–2441 [View Article]
    [Google Scholar]
  15. Hojati Z, Milne C, Harvey B, Gordon L, Borg M et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor . Chem Biol 2002; 9:1175–1187 [View Article]
    [Google Scholar]
  16. Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ et al. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem. Sci. 2012; 3:2716 [View Article]
    [Google Scholar]
  17. Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 2010; 156:2343–2353 [View Article]
    [Google Scholar]
  18. O'Rourke S, Wietzorrek A, Fowler K, Corre C, Challis GL et al. Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor . Mol Microbiol 2009; 71:763–778 [View Article]
    [Google Scholar]
  19. Glazebrook MA, Doull JL, Stuttard C, Vining LC. Sporulation of Streptomyces venezuelae in submerged cultures. J Gen Microbiol 1990; 136:581–588 [View Article]
    [Google Scholar]
  20. Schlimpert S, Flärdh K, Buttner MJ. Fluorescence time-lapse imaging of the complete S. venezuelae life cycle using a microfluidic device. JoVE 2016; 108:e53863
    [Google Scholar]
  21. Inahashi Y, Zhou S, Bibb MJ, Song L, Al-Bassam MM et al. Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue. Chem Sci 2017; 8:2823–2831 [View Article]
    [Google Scholar]
  22. Bush MJ, Chandra G, Al-Bassam M, Findlay K, Buttner M. BldC delays entry into development to produce a sustained period of vegetative growth in Streptomyces venezuelae . bioRxiv 2018; 194126:
    [Google Scholar]
  23. Barakat M, Ortet P, Whitworth DE. P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes. BMC Genomics 2013; 14:269 [View Article]
    [Google Scholar]
  24. Ortet P, De Luca G, Whitworth DE, Barakat M. P2TF: a comprehensive resource for analysis of prokaryotic transcription factors. BMC Genomics 2012; 13:628 [View Article]
    [Google Scholar]
  25. Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ. Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 2004; 150:2795–2806 [View Article]
    [Google Scholar]
  26. Ulrich LE, Koonin E, Zhulin IB. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 200513
    [Google Scholar]
  27. Jiang M, Shao W, Perego M, Hoch JA. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis . Mol Microbiol 2000; 38:535–542 [View Article]
    [Google Scholar]
  28. Bishop A, Fielding S, Dyson P, Herron P. Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 2004; 14:893–900 [View Article]
    [Google Scholar]
  29. Komatsu M, Takano H, Hiratsuka T, Ishigaki Y, Shimada K et al. Proteins encoded by the conservon of Streptomyces coelicolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system. Mol Microbiol 2006; 62:1534–1546 [View Article]
    [Google Scholar]
  30. Pokhrel AR, Nguyen HT, Dhakal D, Chaudhary AK, Sohng JK. Implication of orphan histidine kinase (OhkAsp) in biosynthesis of doxorubicin and daunorubicin in Streptomyces peucetius ATCC 27952. Microbiol Res 2018; 214:37–46 [View Article]
    [Google Scholar]
  31. Takano H, Hashimoto K, Yamamoto Y, Beppu T, Ueda K. Pleiotropic effect of a null mutation in the cvn1 conservon of Streptomyces coelicolor A3(2). Gene 2011; 477:12–18 [View Article]
    [Google Scholar]
  32. Yagüe P, Rodríguez-García A, López-García MT, Rioseras B, Martín JF et al. Transcriptomic analysis of liquid non-sporulating Streptomyces coelicolor cultures demonstrates the existence of a complex differentiation comparable to that occurring in solid sporulating cultures. PLoS One 2014; 9:e86296 [View Article]
    [Google Scholar]
  33. Zhao Y, Li L, Zheng G, Jiang W, Deng Z et al. CRISPR/dCas9-mediated multiplex gene repression in Streptomyces . Biotechnol J 2018; 13:1800121 [View Article]
    [Google Scholar]
  34. Xu Z, Wang Y, Chater KF, Ou HY, Xu HH et al. Large-scale transposition mutagenesis of Streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis. Appl Environ Microbiol 2017; 83:1–16 [View Article]
    [Google Scholar]
  35. Romero-Rodríguez A, Rocha D, Ruiz-Villafan B, Tierrafría V, Rodríguez-Sanoja R et al. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. BMC Microbiol 2016; 16:77 [View Article]
    [Google Scholar]
  36. Wang L, Tian X, Wang J, Yang H, Fan K et al. Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci U S A 2009; 106:8617–8622 [View Article]
    [Google Scholar]
  37. Patkari M, Mehra S. Transcriptomic study of ciprofloxacin resistance in Streptomyces coelicolor A3(2). Mol Biosyst 2013; 9:3101 [View Article]
    [Google Scholar]
  38. Molle V, Buttner MJ. Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol Microbiol 2000; 36:1265–1278 [View Article]
    [Google Scholar]
  39. Nguyen THK, Kumagai T, Matoba Y, Suzaki T, Sugiyama M. Molecular cloning and functional analysis of minD gene from Streptomyces lavendulae ATCC25233. J Biosci Bioeng 2008; 106:303–305 [View Article]
    [Google Scholar]
  40. Lu T, Zhu Y, Zhang P, Sheng D, Cao G et al. SCO5351 is a pleiotropic factor that impacts secondary metabolism and morphological development in Streptomyces coelicolor. FEMS Microbiol Lett 2018; 365: [View Article]
    [Google Scholar]
  41. Aínsa JA, Parry HD, Chater KF. A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 1999; 34:607–619 [View Article]
    [Google Scholar]
  42. Al-Bassam MM, Haist J, Neumann SA, Lindenberg S, Tschowri N. Expression patterns, genomic conservation and input into developmental regulation of the GGDEF/EAL/HD-GYP domain proteins in Streptomyces . Front Microbiol 2018; 9:2524 [View Article]
    [Google Scholar]
  43. Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345–379 [View Article]
    [Google Scholar]
  44. Galperin MY. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 2005; 5:35 [View Article]
    [Google Scholar]
  45. Capra EJ, Laub MT. Evolution of two-component signal transduction systems. Annu Rev Microbiol 2012; 66:325–347 [View Article]
    [Google Scholar]
  46. Alm E, Huang K, Arkin A. The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput Biol 2006; 2:e143–42 [View Article]
    [Google Scholar]
  47. Alvarez-Álvarez R, Rodríguez-García A, Santamarta I, Pérez-Redondo R, Prieto-Domínguez A et al. Transcriptomic analysis of Streptomyces clavuligerus ΔccaR::tsr: effects of the cephamycin C-clavulanic acid cluster regulator CcaR on global regulation. Microb Biotechnol 2014; 7:221–231 [View Article]
    [Google Scholar]
  48. Kim YJ, Moon MH, Song JY, Smith CP, Hong S-K et al. Acidic pH shock induces the expressions of a wide range of stress-response genes. BMC Genomics 2008; 9:604 [View Article]
    [Google Scholar]
  49. Yagüe P, Rodríguez-García A, López-García MT, Rioseras B, Martín JF et al. Transcriptomic analysis of liquid non-sporulating Streptomyces coelicolor cultures demonstrates the existence of a complex differentiation comparable to that occurring in solid sporulating cultures. PLoS One 2014; 9:e86296 [View Article]
    [Google Scholar]
  50. Liu M, Zhang P, Zhu Y, Lu T, Wang Y et al. Novel two-component system macrs is a pleiotropic regulator that controls multiple morphogenic membrane protein genes in Streptomyces coelicolor . Appl Environ Microbiol 2019; 85:e02178–18 [View Article]
    [Google Scholar]
  51. Yepes A, Rico S, Rodríguez-García A, Santamaría RI, Díaz M. Novel two-component systems implied in antibiotic production in Streptomyces coelicolor. PLoS One 2011; 6:e19980 [View Article]
    [Google Scholar]
  52. Som NF, Heine D, Holmes NA, Munnoch JT, Chandra G et al. The conserved actinobacterial two-component system MtrAB coordinates chloramphenicol production with sporulation in Streptomyces venezuelae NRRL B-65442. Front Microbiol 2017; 8:1–11 [View Article]
    [Google Scholar]
  53. Yu Z, Zhu H, Dang F, Zhang W, Qin Z et al. Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor . Mol Microbiol 2012; 85:535–556 [View Article]
    [Google Scholar]
  54. Yeo KJ, Han YH, Eo Y, Cheong HK. Expression, purification, crystallization and preliminary X-ray analysis of the extracellular sensory domain of DraK histidine kinase from Streptomyces coelicolor . Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:909–911 [View Article]
    [Google Scholar]
  55. Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ. Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 1999; 181:204–211
    [Google Scholar]
  56. Wyszynski FJ, Hesketh AR, Bibb MJ, Davis BG. Dissecting tunicamycin biosynthesis by genome mining: cloning and heterologous expression of a minimal gene cluster. Chem Sci 2010; 1:581–589 [View Article]
    [Google Scholar]
  57. Wang C, Ge H, Dong H, Zhu C, Li Y et al. A novel pair of two-component signal transduction system ecrE1/ecrE2 regulating antibiotic biosynthesis in Streptomyces coelicolor . Biologia 2007; 62:511–516 [View Article]
    [Google Scholar]
  58. Song JY, Kim ES, Kim DW, Jensen SE, Lee KJ. A gene located downstream of the clavulanic acid gene cluster in Streptomyces clavuligerus ATCC 27064 encodes a putative response regulator that affects clavulanic acid production. J Ind Microbiol Biotechnol 2009; 36:301–311 [View Article]
    [Google Scholar]
  59. Fu J, Qin R, Zong G, Liu C, Kang N et al. The CagRS two-component system regulates clavulanic acid metabolism via multiple pathways in Streptomyces clavuligerus F613-1. Front Microbiol 2019; 10:244 [View Article]
    [Google Scholar]
  60. San Paolo S, Huang J, Cohen SN, Thompson CJ. rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor . Mol Microbiol 2006; 61:1167–1186 [View Article]
    [Google Scholar]
  61. Rozas D, Gullón S, Mellado RP. A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor . PLoS One 2012; 7:e31760 [View Article]
    [Google Scholar]
  62. Rodriguez H, Rico S, Yepes A, Franco-Echevarría E, Antoraz S et al. The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor . Front Microbiol 2015; 6:1–9 [View Article]
    [Google Scholar]
  63. Tsujibo H, Hatano N, Okamoto T, Endo H, Miyamoto K et al. Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system. FEMS Microbiol Lett 1999; 181:83–90 [View Article]
    [Google Scholar]
  64. Brian P, Riggle PJ, Santos RA, Champness WC. Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J Bacteriol 1996; 178:3221–3231 [View Article]
    [Google Scholar]
  65. Li L, Jiang W, Lu Y. A novel two-component system, GluR-GluK, involved in glutamate sensing and uptake in Streptomyces coelicolor . J Bacteriol 2017; 199:e00097–17 [View Article]
    [Google Scholar]
  66. Chang H-M, Chen M-Y, Shieh Y-T, Bibb MJ, Chen CW. The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol 1996; 21:107–108
    [Google Scholar]
  67. Bibb LA, Kunkle CA, Schmitt MP. The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae . Infect Immun 2007; 75:2421–2431 [View Article]
    [Google Scholar]
  68. Bihlmaier C, Welle E, Hofmann C, Welzel K, Vente A et al. Biosynthetic gene cluster for the polyenoyltetramic acid alpha-lipomycin. Antimicrob Agents Chemother 2006; 50:2113–2121 [View Article]
    [Google Scholar]
  69. van Keulen G, Alderson J, White J, Sawers RG. The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress. Environ Microbiol 2007; 9:3143–3149 [View Article]
    [Google Scholar]
  70. Hong H-J, Hutchings MI, Neu JM, Wright GD, Paget MSB et al. Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 2004; 52:1107–1121 [View Article]
    [Google Scholar]
  71. Perez JC, Groisman EA. Evolution of transcriptional regulatory circuits in bacteria. Cell 2009; 138:233–244 [View Article]
    [Google Scholar]
  72. Zahrt TC, Deretic V. An essential two-component signal transduction system in Mycobacterium tuberculosis . J Bacteriol 2000; 182:3832–3838 [View Article]
    [Google Scholar]
  73. Möker N, Brocker M, Schaffer S, Krämer R, Morbach S et al. Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 2004; 54:420–438 [View Article]
    [Google Scholar]
  74. Brocker M, Bott M. Evidence for activator and repressor functions of the response regulator MtrA from Corynebacterium glutamicum . FEMS Microbiol Lett 2006; 264:205–212 [View Article]
    [Google Scholar]
  75. Purushotham G, Sarva KB, Blaszczyk E, Rajagopalan M, Madiraju MV. Mycobacterium tuberculosis oriC sequestration by MtrA response regulator. Mol Microbiol 2015; 98:586–604 [View Article]
    [Google Scholar]
  76. Kang C-M, Abbott DW, Park ST, Dascher CC, Cantley LC et al. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 2005; 19:1692–1704 [View Article]
    [Google Scholar]
  77. Plocinska R, Purushotham G, Sarva K, Vadrevu IS, Pandeeti EVP et al. Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression. J Biol Chem 2012; 287:23887–23899 [View Article]
    [Google Scholar]
  78. Plocinska R, Martinez L, Gorla P, Pandeeti E, Sarva K et al. Mycobacterium tuberculosis MtrB sensor kinase interactions with FtsI and Wag31 proteins reveal a role for MtrB distinct from that regulating MtrA activities. J Bacteriol 2014; 196:4120–4129 [View Article]
    [Google Scholar]
  79. Nguyen KT, Piastro K, Gray TA, Derbyshire KM. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis . J Bacteriol 2010; 192:5134–5142 [View Article]
    [Google Scholar]
  80. Gao B, Paramanathan R, Gupta RS. Signature proteins that are distinctive characteristics of actinobacteria and their subgroups. Antonie Van Leeuwenhoek 2006; 90:69–91 [View Article]
    [Google Scholar]
  81. Zhang P, Wu L, Zhu Y, Liu M, Wang Y et al. Deletion of MtrA inhibits cellular development of Streptomyces coelicolor and alters expression of developmental regulatory genes. Front Microbiol 2013; 2017:8
    [Google Scholar]
  82. Clark LC, Seipke RF, Prieto P, Willemse J, van Wezel GP et al. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Sci Rep 2013; 3:1109 [View Article]
    [Google Scholar]
  83. Noda Y, Yoda K, Takatsuki A, Yamasaki M. TmrB protein, responsible for tunicamycin resistance of Bacillus subtilis, is a novel ATP-binding membrane protein. J Bacteriol 1992; 174:4302–4307 [View Article]
    [Google Scholar]
  84. Munnoch JT, Martinez MTP, Svistunenko DA, Crack JC, Le Brun NE et al. Characterization of a putative NsrR homologue in Streptomyces venezuelae reveals a new member of the Rrf2 superfamily. Sci Rep 2016; 6:31597 [View Article]
    [Google Scholar]
  85. Kwon S-Y, Kwon H-J. The possible role of SCO3388, a tmrB-like gene of Streptomyces coelicolor, in germination and stress survival of spores. J Appl Biol Chem 2013; 56:165–170 [View Article]
    [Google Scholar]
  86. Darmon E, Noone D, Masson A, Bron S, Kuipers OP et al. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis . J Bacteriol 2002; 184:5661–5671 [View Article]
    [Google Scholar]
  87. Allenby NEE, Laing E, Bucca G, Kierzek AM, Smith CP. Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets. Nucleic Acids Res 2012; 40:9543–9556 [View Article]
    [Google Scholar]
  88. Sola-Landa A, Rodríguez-García A, Franco-Domínguez E, Martín JF. Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 2005; 56:1373–1385 [View Article]
    [Google Scholar]
  89. Apel AK, Sola-Landa A, Rodríguez-García A, Martín JF. Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 2007; 153:3527–3537 [View Article]
    [Google Scholar]
  90. Sola-Landa A, Rodríguez-García A, Apel AK, Martín JF. Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor . Nucleic Acids Res 2008; 36:1358–1368 [View Article]
    [Google Scholar]
  91. Boukhris I, Dulermo T, Chouayekh H, Virolle M-J. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor . J Basic Microbiol 2016; 56:59–66 [View Article]
    [Google Scholar]
  92. Brzoska P, Boos W. The ugp-encoded glycerophosphoryldiester phosphodiesterase, a transport-related enzyme of Escherichia coli . FEMS Microbiol Rev 1989; 63:115–124 [View Article]
    [Google Scholar]
  93. Santos-Beneit F, Rodríguez-García A, Sola-Landa A, Martín JF. Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 2009; 72:53–68 [View Article]
    [Google Scholar]
  94. Ghorbel S, Kormanec J, Artus A, Virolle MJ. Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and PPK genes of Streptomyces lividans TK24. J Bacteriol 2006; 188:677–686 [View Article]
    [Google Scholar]
  95. Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics 2007; 7:2410–2429 [View Article]
    [Google Scholar]
  96. Martín-Martín S, Rodríguez-García A, Santos-Beneit F, Franco-Domínguez E, Sola-Landa A et al. Self-control of the PHO regulon: the PhoP-dependent protein PhoU controls negatively expression of genes of PHO regulon in Streptomyces coelicolor . J Antibiot 2017; 71:113–122 [View Article]
    [Google Scholar]
  97. Santos-Beneit F, Rodríguez-García A, Apel AK, Martín JF. Phosphate and carbon source regulation of two PhoP-dependent glycerophosphodiester phosphodiesterase genes of Streptomyces coelicolor . Microbiology 2009; 155:1800–1811 [View Article]
    [Google Scholar]
  98. Fernández-Martínez LT, Santos-Beneit F, Martín JF. Is PhoR-PhoP partner fidelity strict? PhoR is required for the activation of the PHO regulon in Streptomyces coelicolor . Mol Genet Genomics 2012; 287:565–573 [View Article]
    [Google Scholar]
  99. Mendes MV, Tunca S, Antón N, Recio E, Sola-Landa A et al. The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng 2007; 9:217–227 [View Article]
    [Google Scholar]
  100. Jeong Y, Kim J-N, Kim MW, Bucca G, Cho S et al. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun 2016; 7:11605 [View Article]
    [Google Scholar]
  101. Rico S, Santamaría RI, Yepes A, Rodríguez H, Laing E et al. Deciphering the regulon of Streptomyces coelicolor AbrC3, a positive response regulator of antibiotic production. Appl. Environ. Microbiol. 2014; 80:2417–2428 [View Article]
    [Google Scholar]
  102. Joly N, Engl C, Jovanovic G, Huvet M, Toni T et al. Managing membrane stress: the phage shock protein (PSP) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797–827 [View Article]
    [Google Scholar]
  103. Kleine B, Chattopadhyay A, Polen T, Pinto D, Mascher T et al. The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum . Mol Microbiol 2017; 106:719–741 [View Article]
    [Google Scholar]
  104. Vrancken K, Van Mellaert L, Anné J. Characterization of the Streptomyces lividans PspA response. J Bacteriol 2008; 190:3475–3481 [View Article]
    [Google Scholar]
  105. Hesketh A, Hill C, Mokhtar J, Novotna G, Tran N et al. Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope. BMC Genomics 2011; 12:226 [View Article]
    [Google Scholar]
  106. Wang R, Mast Y, Wang J, Zhang W, Zhao G et al. Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor . Mol Microbiol 2013; 87:30–48 [View Article]
    [Google Scholar]
  107. Tran NT, Huang X, Hong Hee‐Jeon, Bush MJ, Chandra G et al. Defining the regulon of genes controlled by σE, a key regulator of the cell envelope stress response in Streptomyces coelicolor . Mol Microbiol 2019; 359: [View Article]
    [Google Scholar]
  108. Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA, Beppu T. A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 1992; 174:7585–7594 [View Article]
    [Google Scholar]
  109. Shu D, Chen L, Wang W, Yu Z, Ren C et al. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor . Appl Microbiol Biotechnol 2009; 81:1149–1160 [View Article]
    [Google Scholar]
  110. Daniel-Ivad M, Hameed N, Tan S, Dhanjal R, Socko D et al. An engineered Allele of afsQ1 facilitates the discovery and investigation of cryptic natural products. ACS Chem Biol 2017; 12:628–634 [View Article]
    [Google Scholar]
  111. Fernández Martínez L, Bishop A, Parkes L, Del Sol R, Salerno P et al. Osmoregulation in Streptomyces coelicolor: modulation of SigB activity by OsaC. Mol Microbiol 2009; 71:1250–1262 [View Article]
    [Google Scholar]
  112. Godinez O, Dyson P, del Sol R, Barrios-Gonzalez J, Millan-Pacheco C et al. Targeting the osmotic stress response for strain improvement of an industrial producer of secondary metabolites. J Microbiol Biotechnol 2015; 25:1787–1795 [View Article]
    [Google Scholar]
  113. Tseng HC, Chen CW. A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective MelC1, a putative copper-transfer gene. Mol Microbiol 1991; 5:1187–1196
    [Google Scholar]
  114. Hutchings MI, Hong H-J, Leibovitz E, Sutcliffe IC, Buttner MJ. The sigma(E) cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J Bacteriol 2006; 188:7222–7229 [View Article]
    [Google Scholar]
  115. Paget MS, Leibovitz E, Buttner MJ. A putative two-component signal transduction system regulates sigmaE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2). Mol Microbiol 1999; 33:97–107 [View Article]
    [Google Scholar]
  116. Cao M, Wang T, Ye R, Helmann JD. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol Microbiol 2002; 45:1267–1276 [View Article]
    [Google Scholar]
  117. Hong H-J, Paget MSB, Buttner MJ. A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol 2002; 44:1199–1211 [View Article]
    [Google Scholar]
  118. Yong-quan L, Pei-lin C, Shi-fei C, Dan W, Jing Z. A pair of two-component regulatory genes ecrA1/A2 in S. coelicolor . J Zhejiang Univ A 5:173–179
    [Google Scholar]
  119. Brown AG, Butterworth D, Cole M, Hanscomb G, Hood JD et al. Naturally-occurring beta-lactamase inhibitors with antibacterial activity. J Antibiot 1976; 29:668–669 [View Article]
    [Google Scholar]
  120. Willey J, Schwedock J, Losick R. Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor . Genes Dev 1993; 7:895–903 [View Article]
    [Google Scholar]
  121. Zou P, Schrempf H. The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. Eur J Biochem 2000; 267:2840–2849 [View Article]
    [Google Scholar]
  122. Ortiz de Orué Lucana D, Tröller M, Schrempf H. Amino acid residues involved in reversible thiol formation and zinc ion binding in the Streptomyces reticuli redox regulator FurS. Mol Genet Genomics 2003; 268:618–627 [View Article]
    [Google Scholar]
  123. Ortiz de Orué Lucana D, Zou P, Nierhaus M, Schrempf H, Lucana DOdO. Identification of a novel two-component system SenS/SenR modulating the production of the catalase-peroxidase CPEB and the haem-binding protein HbpS in Streptomyces reticuli . Microbiology 2005; 151:3603–3614 [View Article]
    [Google Scholar]
  124. Ortiz de Orué Lucana D, Schaa T, Schrempf H. The novel extracellular Streptomyces reticuli haem-binding protein HbpS influences the production of the catalase-peroxidase CpeB. Microbiology 2004; 150:2575–2585 [View Article]
    [Google Scholar]
  125. Ortiz de Orué Lucana D, Groves MR. The three-component signalling system HbpS-SenS-SenR as an example of a redox sensing pathway in bacteria. Amino Acids 2009; 37:479–486 [View Article]
    [Google Scholar]
  126. Wedderhoff I, Kursula I, Groves MR, Ortiz de Orué Lucana D. Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress. PLoS One 2013; 8:e71579 27 [View Article]
    [Google Scholar]
  127. Taylor P, Tharanathan RN, Kittur FS. Critical reviews in food Science and nutrition chitin — the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 2003; 43:61–87
    [Google Scholar]
  128. Colson S, van Wezel GP, Craig M, Noens EEE, Nothaft H et al. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor . Microbiology 2008; 154:373–382 [View Article]
    [Google Scholar]
  129. Homerová D, Knirschová R, Kormanec J. Response regulator ChiR regulates expression of chitinase gene, chiC, in Streptomyces coelicolor . Folia Microbiol 2002; 47:499–505 [View Article]
    [Google Scholar]
  130. Anderson T, Brian P, Riggle P, Kong R, Champness W. Genetic suppression analysis of non-antibiotic-producing mutants of the Streptomyces coelicolor absA locus. Microbiology 1999; 145:2343–2353 [View Article]
    [Google Scholar]
  131. Du YL, Shen XL, Yu P, Bai LQ, Li YQ et al. Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol 2011; 77:8415–8426 [View Article]
    [Google Scholar]
  132. Epstein WBT-P in NAR and MB The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Bio 2003; 75:293–320
    [Google Scholar]
  133. Rothenbücher MC, Facey SJ, Kiefer D, Kossmann M, Kuhn A. The cytoplasmic C-terminal domain of the Escherichia coli KdpD protein functions as a K+ sensor. J Bacteriol 2006; 188:1950–1958 [View Article]
    [Google Scholar]
  134. Heermann R, Jung K. The complexity of the 'simple' two-component system KdpD/KdpE in Escherichia coli . FEMS Microbiol Lett 2010; 304:97–106 [View Article]
    [Google Scholar]
  135. Greie J-C, Altendorf K. The K+-translocating KdpFABC complex from Escherichia coli: a P-type ATPase with unique features. J Bioenerg Biomembr 2007; 39:397–402 [View Article]
    [Google Scholar]
  136. Freeman ZN, Dorus S, Waterfield NR. The KdpD/KdpE two-component system: integrating K⁺ homeostasis and virulence. PLoS Pathog 2013; 9:e1003201 [View Article]
    [Google Scholar]
  137. Steyn AJC, Joseph J, Bloom BR. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol Microbiol 2003; 47:1075–1089 [View Article]
    [Google Scholar]
  138. Ali MK, Li X, Tang Q, Liu X, Chen F et al. Regulation of Inducible Potassium Transporter KdpFABC by the KdpD/KdpE Two-Component System in Mycobacterium smegmatis . Front Microbiol 2017; 8:570 [View Article]
    [Google Scholar]
  139. Frunzke J, Gätgens C, Brocker M, Bott M. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J Bacteriol 2011; 193:1212–1221 [View Article]
    [Google Scholar]
  140. Heyer A, Gätgens C, Hentschel E, Kalinowski J, Bott M et al. The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum . Microbiology 2012; 158:3020–3031 [View Article]
    [Google Scholar]
  141. Hong H-J, Hutchings MI, Buttner MJ. Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol 2008; 631:200–213
    [Google Scholar]
  142. Hutchings MI, Hong HJ, Buttner MJ. The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor . Mol Microbiol 2006; 59:923–935 [View Article]
    [Google Scholar]
  143. Kwun MJ, Novotna G, Hesketh AR, Hill L, Hong HJ. In vivo studies suggest that induction of VanS-dependent vancomycin resistance requires binding of the drug to D-Ala-D-Ala termini in the peptidoglycan cell wall. Antimicrob Agents Chemother 2013; 57:4470–4480 [View Article]
    [Google Scholar]
  144. Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 2006; 70:910–938 [View Article]
    [Google Scholar]
  145. Lu Y, He J, Zhu H, Yu Z, Wang R et al. An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor . J Bacteriol 2011; 193:3020–3032 [View Article]
    [Google Scholar]
  146. White RA, Szurmant H, Hoch JA, Hwa T. Features of protein-protein interactions in two-component signaling deduced from genomic libraries. Methods Enzymol 2007; 422:75–101 [View Article]
    [Google Scholar]
  147. Burger L, van Nimwegen E. Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol Syst Biol 2008; 4:165 [View Article]
    [Google Scholar]
  148. Procaccini A, Lunt B, Szurmant H, Hwa T, Weigt M. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks. PLoS One 2011; 6:e19729 [View Article]
    [Google Scholar]
  149. Zschiedrich CP, Keidel V, Szurmant H. Molecular mechanisms of two-component signal transduction. J Mol Biol 2016; 428:3752–3775 [View Article]
    [Google Scholar]
  150. Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ. Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 2014; 10:e1004554 [View Article]
    [Google Scholar]
  151. Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A. Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 2002; 46:331–347 [View Article]
    [Google Scholar]
  152. Reuther J, Wohlleben W. Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 2007; 12:139–146 [View Article]
    [Google Scholar]
  153. Xu Y, Ye BC. GlnR and PhoP regulate β-glucosidases involved in cellulose digestion in response to nitrogen and phosphate availability. Microbiology 2018; 164:779–789 [View Article]
    [Google Scholar]
  154. Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 2015; 4:723–728 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000817
Loading
/content/journal/micro/10.1099/mic.0.000817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error