1887

Abstract

The specific pH values of cellular compartments affect virtually all biochemical processes, including enzyme activity, protein folding and redox state. Accurate, sensitive and compartment-specific measurements of intracellular pH (pH) dynamics in living cells are therefore crucial to the understanding of stress response and adaptation. We used the pH-sensitive GFP derivative ‘ratiometric pHluorin’ expressed in the cytosol and in the mitochondrial matrix of growing to assess the variation in cytosolic pH (pH) and mitochondrial pH (pH) in response to nutrient availability, respiratory chain activity, shifts in environmental pH and stress induced by addition of sorbic acid. The measurement allowed accurate determination of organelle-specific pH, determining a constant pH of 7.2 and a constant pH of 7.5 in cells exponentially growing on glucose. We show that pH and pH are differentially regulated by carbon source and respiratory chain inhibitors. Upon glucose starvation or sorbic acid stress, pH decrease coincided with growth stasis. Additionally, pH and growth coincided similarly in recovery after addition of glucose to glucose-starved cultures or after recovery from a sorbic acid pulse. We suggest a relation between pH and cellular energy generation, and therefore a relation between pH and growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022038-0
2009-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/268.html?itemId=/content/journal/micro/10.1099/mic.0.022038-0&mimeType=html&fmt=ahah

References

  1. Bracey D., Holyoak C. D., Nebe-von Caron G., Coote P. J. 1997; Determination of the intracellular pH (pHi) of growing cells of Saccharomyces cerevisiae: the effect of reduced expression of the membrane H+-ATPase. J Microbiol Methods 31:113–125
    [Google Scholar]
  2. Bracey D., Holyoak C. D., Coote P. J. 1998; Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH?. J Appl Microbiol 85:1056–1066
    [Google Scholar]
  3. Brett C. L., Tukaye D. N., Mukherjee S., Rao R. 2005; The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405
    [Google Scholar]
  4. Brett C. L., Donowitz M., Rao R. 2006; Does the proteome encode organellar pH?. FEBS Lett 580:717–719
    [Google Scholar]
  5. Carmelo V., Bogaerts P., Sa-Correia I. 1996; Activity of plasma membrane H+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH. Arch Microbiol 166:315–320
    [Google Scholar]
  6. Causton H. C., Ren B., Koh S. S. other authors 2001; Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337
    [Google Scholar]
  7. Fernandes A. R., Durao P. J., Santos P. M., Sa-Correia I. 2003; Activation and significance of vacuolar H+-ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Biochem Biophys Res Commun 312:1317–1324
    [Google Scholar]
  8. Gillies R. J., Ugurbil K., den Hollander J. A., Shulman R. G. 1981; 31P NMR studies of intracellular pH and phosphate metabolism during cell division cycle of Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 78:2125–2129
    [Google Scholar]
  9. Goffeau A., Slayman C. W. 1981; The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta 639:197–223
    [Google Scholar]
  10. Guldfeldt L. U., Arneborg N. 1998; Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy. Appl Environ Microbiol 64:530–534
    [Google Scholar]
  11. Kapteyn J. C., ter Riet B., Vink E., Blad S., De Nobel H., Van Den Ende H., Klis F. M. 2001; Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–479
    [Google Scholar]
  12. Karagiannis J., Young P. G. 2001; Intracellular pH homeostasis during cell-cycle progression and growth state transition in Schizosaccharomyces pombe . J Cell Sci 114:2929–2941
    [Google Scholar]
  13. Krebs H. A., Wiggins D., Stubbs M., Sols A., Bedoya F. 1983; Studies on the mechanism of the antifungal action of benzoate. Biochem J 214:657–663
    [Google Scholar]
  14. Kresnowati M. T., Suarez-Mendez C., Groothuizen M. K., van Winden W. A., Heijnen J. J. 2007; Measurement of fast dynamic intracellular pH in Saccharomyces cerevisiae using benzoic acid pulse. Biotechnol Bioeng 97:86–98
    [Google Scholar]
  15. Lagunas R. 1976; Energy metabolism of Saccharomyces cerevisiae. Discrepancy between ATP balance and known metabolic functions. Biochim Biophys Acta 440:661–674
    [Google Scholar]
  16. Lanz E., Slavik J., Kotyk A. 1999; 2′,7′-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein as a dual-emission fluorescent indicator of intracellular pH suitable for argon laser confocal microscopy. Folia Microbiol (Praha 44:429–434
    [Google Scholar]
  17. Llopis J., McCaffery J. M., Miyawaki A., Farquhar M. G., Tsien R. Y. 1998; Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95:6803–6808
    [Google Scholar]
  18. Makrantoni V., Dennison P., Stark M. J., Coote P. J. 2007; A novel role for the yeast protein kinase Dbf2p in vacuolar H+-ATPase function and sorbic acid stress tolerance. Microbiology 153:4016–4026
    [Google Scholar]
  19. Martínez-Muñoz G. A., Kane P. 2008; Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319
    [Google Scholar]
  20. Miesenböck G., De Angelis D. A., Rothman J. E. 1998; Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195
    [Google Scholar]
  21. Motizuki M., Yokota S., Tsurugi K. 2008; Effect of low pH on organization of the actin cytoskeleton in Saccharomyces cerevisiae . Biochim Biophys Acta 1780179–184
    [Google Scholar]
  22. Nishimura K., Igarashi K., Kakinuma Y. 1998; Proton gradient-driven nickel uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae . J Bacteriol 180:1962–1964
    [Google Scholar]
  23. Ogino T., den Hollander J. A., Shulman R. G. 1983; 39K, 23Na, and 31P NMR studies of ion transport in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 80:5185–5189
    [Google Scholar]
  24. Ohsumi Y., Anraku Y. 1981; Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae . J Biol Chem 256:2079–2082
    [Google Scholar]
  25. Paroutis P., Touret N., Grinstein S. 2004; The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda 19:207–215
    [Google Scholar]
  26. Piper P., Calderon C. O., Hatzixanthis K., Mollapour M. 2001; Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642
    [Google Scholar]
  27. Preston R. A., Murphy R. F., Jones E. W. 1989; Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci U S A 86:7027–7031
    [Google Scholar]
  28. Ramos S., Balbin M., Raposo M., Valle E., Pardo L. A. 1989; The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae . J Gen Microbiol 135:2413–2422
    [Google Scholar]
  29. Roos A., Boron W. F. 1981; Intracellular pH. Physiol Rev 61:296–434
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schiestl R. H., Gietz R. D. 1989; High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346
    [Google Scholar]
  32. Shaner N. C., Steinbach P. A., Tsien R. Y. 2005; A guide to choosing fluorescent proteins. Nat Methods 2:905–909
    [Google Scholar]
  33. Sheff M. A., Thorn K. S. 2004; Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae . Yeast 21:661–670
    [Google Scholar]
  34. Siegumfeldt H., Bjorn Rechinger K., Jakobsen M. 2000; Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Appl Environ Microbiol 66:2330–2335
    [Google Scholar]
  35. Smith C. B., Anderson J. E., Fischer R. L., Webb S. R. 2002; Stability of green fluorescent protein using luminescence spectroscopy: is GFP applicable to field analysis of contaminants?. Environ Pollut 120:517–520
    [Google Scholar]
  36. Valli M., Sauer M., Branduardi P., Borth N., Porro D., Mattanovich D. 2005; Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry. Appl Environ Microbiol 71:1515–1521
    [Google Scholar]
  37. Van Leeuwen C. C., Weusthuis R. A., Postma E., Van den Broek P. J., Van Dijken J. P. 1992; Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles. Biochem J 284:441–445
    [Google Scholar]
  38. van Roermund C. W., de Jong M., Ijlst L., van Marle J., Dansen T. B., Wanders R. J., Waterham H. R. 2004; The peroxisomal lumen in Saccharomyces cerevisiae is alkaline. J Cell Sci 117:4231–4237
    [Google Scholar]
  39. van Urk H., Schipper D., Breedveld G. J., Mak P. R., Scheffers W. A., van Dijken J. P. 1989; Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochim Biophys Acta 992:78–86
    [Google Scholar]
  40. Veine D. M., Arscott L. D., Williams C. H. Jr 1998; Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis. Biochemistry 37:15575–15582
    [Google Scholar]
  41. Vemuri G. N., Eiteman M. A., McEwen J. E., Olsson L., Nielsen J. 2007; Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 104:2402–2407
    [Google Scholar]
  42. Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. 1992; Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517
    [Google Scholar]
  43. Westermann B., Neupert W. 2000; Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae . Yeast 16:1421–1427
    [Google Scholar]
  44. Wohlrab H., Flowers N. 1982; pH gradient-dependent phosphate transport catalyzed by the purified mitochondrial phosphate transport protein. J Biol Chem 257:28–31
    [Google Scholar]
  45. Zakrzewska A., Boorsma A., Brul S., Hellingwerf K. J., Klis F. M. 2005; Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot Cell 4:703–715
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022038-0
Loading
/content/journal/micro/10.1099/mic.0.022038-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error