1887

Abstract

Switching from the motile planktonic bacterial lifestyle to a biofilm existence is stimulated by the signalling molecule bis-(3′-5′)-cyclic-diguanosine monophosphate (cyclic-di-GMP), which is antagonistically controlled by diguanylate cyclases (DGCs; characterized by GGDEF domains) and specific phosphodiesterases (PDEs; mostly featuring EAL domains). Here, we present the expression patterns of all 28 genes that encode GGDEF/EAL domain proteins in K-12. Twenty-one genes are expressed in Luria–Bertani medium, with 15 being under control. While a small subset of GGDEF/EAL proteins (YeaJ and YhjH) is dominant and modulates motility in post-exponentially growing cells, a diverse battery of GGDEF/EAL proteins is deployed during entry into stationary phase, especially in cells grown at reduced temperature (28 °C). This suggests that multiple signal input into cyclic-di-GMP control is particularly important in growth-restricted cells in an extra-host environment. Six GGDEF/EAL genes differentially control the expression of adhesive curli fimbriae. Besides the previously described , , and genes, these are (), which stimulates the expression of the DGC YdaM and the major curli regulator CsgD, and , which contributes to expression of the curli structural operon . Finally, we discuss why other GGDEF/EAL domain-encoding genes, despite being expressed, do not influence motility and/or curli formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024257-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1318.html?itemId=/content/journal/micro/10.1099/mic.0.024257-0&mimeType=html&fmt=ahah

References

  1. Adler J., Templeton B. 1967; The effect of environmental conditions on the motility of Escherichia coli . J Gen Microbiol 46:175–184
    [Google Scholar]
  2. Amikam D., Galperin M. Y. 2006; PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6
    [Google Scholar]
  3. Amsler C. D., Cho M., Matsumura P. 1993; Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol 175:6238–6244
    [Google Scholar]
  4. Beloin C., Roux A., Ghigo J.-M. 2008; Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289
    [Google Scholar]
  5. Benach J., Swaminathan S. S., Tamayo R., Handelman S. K., Folta-Stogniew E., Ramos J. E., Forouhar F., Neely H., Seetharaman J. other authors 2007; The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26:5153–5166
    [Google Scholar]
  6. Brombacher E., Baratto A., Dorel C., Landini P. 2006; Gene expression regulation by the curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. J Bacteriol 188:2027–2037
    [Google Scholar]
  7. Brown P. K., Dozois C. M., Nickerson C. A., Zuppardo A., Terlonge J., Curtiss R. III 2001; MlrA, a novel regulator of curli (Agf) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol 41:349–363
    [Google Scholar]
  8. Chang A. L., Tuckerman J. R., Gonzalez G., Mayer R., Weinhouse H., Volman G., Amikam D., Benziman M., Gilles-Gonzalez M.-A. 2001; Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum , is a heme-based sensor. Biochemistry 40:3420–3426
    [Google Scholar]
  9. Christen M., Christen B., Folcher M., Schauerte A., Jenal U. 2005; Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280:30829–30837
    [Google Scholar]
  10. Christen M., Christen B., Allan M. G., Folcher M., Jenö P., Grzesiek S., Jenal U. 2007; DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus . Proc Natl Acad Sci U S A 104:4112–4117
    [Google Scholar]
  11. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  12. Frye J., Karlinsey J. E., Felise H. R., Marzolf B., Dowidar N., McClelland M., Hughes K. T. 2006; Identification of new flagellar genes of Salmonella enterica serovar Typhimurium. J Bacteriol 188:2233–2243
    [Google Scholar]
  13. Gerstel U., Park C., Römling U. 2003; Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654
    [Google Scholar]
  14. Girgis H. S., Liu Y., Ryu W. S., Tavazoie S. 2007; A comprehensive genetic characterization of bacterial motility. PLoS Genet 3:e154
    [Google Scholar]
  15. Gruber T. M., Gross C. A. 2003; Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466
    [Google Scholar]
  16. Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B. L. other authors 2006; Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2:2006.0007
    [Google Scholar]
  17. Hickman J. W., Harwood C. S. 2008; Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389
    [Google Scholar]
  18. Hickman J. W., Tifrea D. F., Harwood C. S. 2005; A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14422–14427
    [Google Scholar]
  19. Jenal U., Malone J. 2006; Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407
    [Google Scholar]
  20. Jonas K., Edwards A. N., Simm R., Romeo T., Römling U., Melefors O. 2008; The RNA binding protein CsrA controls c-di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol 70:236–257
    [Google Scholar]
  21. Kader A., Simm R., Gerstel U., Morr M., Römling U. 2006; Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60:602–616
    [Google Scholar]
  22. Ko M., Park C. 2000; Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli . J Mol Biol 303:371–382
    [Google Scholar]
  23. Kulasakara H., Lee E., Brencic A., Liberati N., Urbach J., Miyata S., Lee D. G., Neely A. N., Hyodo M. other authors 2006; Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterase reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103:2839–2844
    [Google Scholar]
  24. Lange R., Hengge-Aronis R. 1991; Identification of a central regulator of stationary-phase gene expression in Escherichia coli . Mol Microbiol 5:49–59
    [Google Scholar]
  25. Lange R., Hengge-Aronis R. 1994; The cellular concentration of the σ S subunit of RNA-polymerase in Escherichia coli is controlled at the levels of transcription, translation and protein stability. Genes Dev 8:1600–1612
    [Google Scholar]
  26. Lee V. T., Matewish J. M., Kessler J. L., Hyodo M., Hayakawa Y., Lory S. 2007; A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474–1484
    [Google Scholar]
  27. Malone J. G., Williams R., Christen M., Jenal U., Spiers A. J., Rainey P. B. 2007; The structure–function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology 153:980–994
    [Google Scholar]
  28. Méndez-Ortiz M. M., Hyodo M., Hayakawa Y., Membrillo-Hernández J. 2006; Genome wide transcription profile of Escherichia coli in response to high levels of the second messenger c-diGMP. J Biol Chem 281:8090–8099
    [Google Scholar]
  29. Merighi M., Lee V. T., Hyodo M., Hayakawa Y., Lory S. 2007; The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa . Mol Microbiol 65:876–895
    [Google Scholar]
  30. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  31. Olsén A., Jonsson A., Normark S. 1989; Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli . Nature 338:652–655
    [Google Scholar]
  32. Paul R., Weiser S., Amiot N., Chan C., Schirmer T., Giese B., Jenal U. 2004; Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727
    [Google Scholar]
  33. Pesavento C., Becker G., Sommerfeldt N., Possling A., Tschowri N., Mehlis A., Hengge R. 2008; Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli . Genes Dev 22:2434–2446
    [Google Scholar]
  34. Powell B. S., Court D. L., Nakamura Y., Rivas M. P., Turnbough C. L. Jr 1994; Rapid confirmation of single copy lambda prophage integration by PCR. Nucleic Acids Res 22:5765–5766
    [Google Scholar]
  35. Rao F., Yang Y., Qi Y., Liang Z. X. 2008; Catalytic mechanism of c-di-GMP specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa . J Bacteriol 190:3622–3631
    [Google Scholar]
  36. Römling U. 2005; Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62:1234–1246
    [Google Scholar]
  37. Römling U., Bian Z., Hammar M., Sierralta W. D., Normark S. 1998; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731
    [Google Scholar]
  38. Römling U., Rohde M., Olsén A., Normark S., Reinköster J. 2000; AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23
    [Google Scholar]
  39. Römling U., Gomelsky M., Galperin M. Y. 2005; C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639
    [Google Scholar]
  40. Ryan R. P., Fouhy Y., Lucey F., Dow J. M. 2006a; Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188:8327–8334
    [Google Scholar]
  41. Ryan R. P., Fouhy Y., Lucey J. F., Crossman L. C., Spiro S., He Y.-W., Zhang L.-H., Heeb S., Williams P., Dow J. M. 2006b; Cell–cell signaling in X anthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103:6712–6717
    [Google Scholar]
  42. Rychlik I., Martin G., Methner U., Lovell M., Cardova L., Sebkova A., Sevcik M., Damborsky J., Barrow P. A. 2002; Identification of Salmonella enterica serovar Typhimurium genes associated with growth suppression in stationary-phase nutrient broth cultures and in the chicken intestine. Arch Microbiol 178:411–420
    [Google Scholar]
  43. Ryjenkov D. A., Tarutina M., Moskvin O. V., Gomelsky M. 2005; Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798
    [Google Scholar]
  44. Ryjenkov D. A., Simm R., Römling U., Gomelsky M. 2006; The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ protein YcgR controls motility in enterobacteria. J Biol Chem 281:30310–30314
    [Google Scholar]
  45. Schmidt A. J., Ryjenkov D. A., Gomelsky M. 2005; The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187:4774–4781
    [Google Scholar]
  46. Simm R., Morr M., Kader A., Nimtz M., Römling U. 2004; GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134
    [Google Scholar]
  47. Simm R., Lusch A., Kader A., Andersson M., Römling U. 2007; Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. J Bacteriol 189:3613–3623
    [Google Scholar]
  48. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53:85–96
    [Google Scholar]
  49. Sudarsan N., Lee E. R., Weinberg Z., Moy R. H., Kim J. N., Link K. H., Breaker R. R. 2008; Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413
    [Google Scholar]
  50. Suzuki K., Babitzke P., Kushner S. R., Romeo T. 2006; Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20:2605–2617
    [Google Scholar]
  51. Tamayo R., Tischler A. D., Camilli A. 2005; The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 280:33324–33330
    [Google Scholar]
  52. Tamayo R., Pratt J. T., Camilli A. 2007; Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148
    [Google Scholar]
  53. Weber H., Polen T., Heuveling J., Wendisch V., Hengge R. 2005; Genome-wide analysis of the general stress response network in Escherichia coli : σ S-dependent genes, promoters and sigma factor selectivity. J Bacteriol 187:1591–1603
    [Google Scholar]
  54. Weber H., Pesavento C., Possling A., Tischendorf G., Hengge R. 2006; Cyclic-di-GMP-mediated signaling within the σ S network of Escherichia coli . Mol Microbiol 62:1014–1034
    [Google Scholar]
  55. Wolfe A. J., Visick K. L. 2008; Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 190:463–475
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024257-0
Loading
/content/journal/micro/10.1099/mic.0.024257-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error