1887

Abstract

has the ability to change its surface lipoprotein profiles frequently. The P35 family lipoproteins encoded by the genes are key players in this profile variation. The HF-2 genome has 38 genes that form three gene clusters. Most of these genes have an invertible promoter sequence that is responsible for the ON/OFF switching of individual gene expression. Here, we identified the recombinase that catalyses inversions of the gene promoters. We focused on two open reading frames of the HF-2 genome, namely MYPE2900 and MYPE8180, which show significant homology to the tyrosine site-specific recombinase (Tsr) family proteins. Since genetic tools for are still not developed, we cloned the MYPE2900 and MYPE8180 genes and expressed them in and . The promoter regions of the genes [ (MYPE6810) or (MYPE6630) genes] were also introduced into and cells expressing MYPE2900 or MYPE8180. Inversion of these promoters occurred in the presence of the MYPE2900 gene but not in the presence of the MYPE8180 gene, indicating that the MYPE2900 gene product is the recombinase that catalyses gene promoter inversions. We used a PCR-based method to detect promoter inversion. This method also enabled us to detect inversions of 10 gene promoters in HF-2 cells. All these promoter inversions occurred at the 12 bp inverted repeat (IR) sequences flanking the promoter sequence. The consensus sequence of these IRs was proposed as TAAYNNNDATTA (Y=C or T; D=A, G or T).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025437-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1241.html?itemId=/content/journal/micro/10.1099/mic.0.025437-0&mimeType=html&fmt=ahah

References

  1. Baseman J. B., Reddy S. P., Dallo S. F. 1996; Interplay between mycoplasma surface proteins, airway cells, and the protean manifestations of mycoplasma-mediated human infections. Am J Respir Crit Care Med 154:S137–S144
    [Google Scholar]
  2. Chopra-Dewasthaly R., Citti C., Glew M. D., Zimmermann M., Rosengarten R., Jechlinger W. 2008; Phase-locked mutants of Mycoplasma agalactiae : defining the molecular switch of high-frequency Vpma antigenic variation. Mol Microbiol 67:1196–1210
    [Google Scholar]
  3. Citti C., Browning G. F., Rosengarten R. 2005; Phenotypic diversity and cell invasion in host subversion by pathogenic mycoplasmas. In Mycoplasmas – Molecular Biology, Pathogenicity and Strategies for Control pp 439–484 Edited by Blanchard A., Browning G. F. Norfolk: Horizon Bioscience;
    [Google Scholar]
  4. Denison A. M., Clapper B., Dybvig K. 2005; Avoidance of the host immune system through phase variation in Mycoplasma pulmonis . Infect Immun 73:2033–2039
    [Google Scholar]
  5. Esposito D., Thrower J. S., Scocca J. J. 2001; Protein and DNA requirements of the bacteriophage HP1 recombination system: a model for intasome formation. Nucleic Acids Res 29:3955–3964
    [Google Scholar]
  6. Girón J. A., Lange M., Baseman J. B. 1996; Adherence, fibronectin binding, and induction of cytoskeleton reorganization in cultured human cells by Mycoplasma penetrans . Infect Immun 64:197–208
    [Google Scholar]
  7. Glew M. D., Baseggio N., Markham P. F., Browning G. F., Walker I. D. 1998; Expression of the pMGA genes of Mycoplasma gallisepticum is controlled by variation in the GAA trinucleotide repeat lengths within the 5′ noncoding regions. Infect Immun 66:5833–5841
    [Google Scholar]
  8. Glew M. D., Marenda M., Rosengarten R., Citti C. 2002; Surface diversity in Mycoplasma agalactiae is driven by site-specific DNA inversions within the vpma multigene locus. J Bacteriol 184:5987–5998
    [Google Scholar]
  9. Hahn T. W., Mothershed E. A., Waldo R. H., Krause D. C. 1999; Construction and analysis of a modified Tn 4001 conferring chloramphenicol resistance in Mycoplasma pneumoniae . Plasmid 41:120–124
    [Google Scholar]
  10. Hedreyda C. T., Lee K. K., Krause D. C. 1993; Transformation of Mycoplasma pneumoniae with Tn 4001 by electroporation. Plasmid 30:170–175
    [Google Scholar]
  11. Himmelreich R., Plagens H., Hilbert H., Reiner B., Herrmann R. 1997; Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium . Nucleic Acids Res 25:701–712
    [Google Scholar]
  12. Honarvar S., Choi B. K., Schifferli D. M. 2003; Phase variation of the 987P-like CS18 fimbriae of human enterotoxigenic Escherichia coli is regulated by site-specific recombinases. Mol Microbiol 48:157–171
    [Google Scholar]
  13. Horino A., Sasaki Y., Sasaki T., Kenri T. 2003; Multiple promoter inversions generate surface antigenic variation in Mycoplasma penetrans . J Bacteriol 185:231–242
    [Google Scholar]
  14. Jacobs E., Bartl A., Oberle K., Schiltz E. 1995; Molecular mimicry by Mycoplasma pneumoniae to evade the induction of adherence inhibiting antibodies. J Med Microbiol 43:422–429
    [Google Scholar]
  15. Kannan T. R., Baseman J. B. 2000; Hemolytic and hemoxidative activities in Mycoplasma penetrans . Infect Immun 68:6419–6422
    [Google Scholar]
  16. Kenri T., Seto S., Horino A., Sasaki Y., Sasaki T., Miyata M. 2004; Use of fluorescent-protein tagging to determine the subcellular localization of Mycoplasma pneumoniae proteins encoded by the cytadherence regulatory locus. J Bacteriol 186:6944–6955
    [Google Scholar]
  17. Knudtson K. L., Minion F. C. 1993; Construction of Tn 4001lac derivatives to be used as promoter probe vectors in mycoplasmas. Gene 137:217–222
    [Google Scholar]
  18. Komano T. 1999; Shufflons: multiple inversion systems and integrons. Annu Rev Genet 33:171–191
    [Google Scholar]
  19. Kuwahara T., Yamashita A., Hirakawa H., Nakayama H., Toh H., Okada N., Kuhara S., Hattori M., Hayashi T., Ohnishi Y. 2004; Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A 101:14919–14924
    [Google Scholar]
  20. Lerner C. G., Inouye M. 1990; Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res 18:4631
    [Google Scholar]
  21. Li X., Lockatell C. V., Johnson D. E., Mobley H. L. 2002; Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis . Mol Microbiol 45:865–874
    [Google Scholar]
  22. Lipman R. P., Clyde W. A. Jr, Denny F. W. 1969; Characteristics of virulent, attenuated, and avirulent Mycoplasma pneumoniae strains. J Bacteriol 100:1037–1043
    [Google Scholar]
  23. Lo S. C., Hayes M. M., Tully J. G., Wang R. Y., Kotani H., Pierce P. F., Rose D. L., Shih J. W. 1992; Mycoplasma penetrans sp. nov., from the urogenital tract of patients with AIDS. Int J Syst Bacteriol 42:357–364
    [Google Scholar]
  24. Lo S. C., Hayes M. M., Kotani H., Pierce P. F., Wear D. J., Newton P. B. III, Tully J. G., Shih J. W. 1993; Adhesion onto and invasion into mammalian cells by Mycoplasma penetrans : a newly isolated mycoplasma from patients with AIDS. Mod Pathol 6:276–280
    [Google Scholar]
  25. Lysnyansky I., Ron Y., Yogev D. 2001; Juxtaposition of an active promoter to vsp genes via site-specific DNA inversions generates antigenic variation in Mycoplasma bovis . J Bacteriol 183:5698–5708
    [Google Scholar]
  26. Neyrolles O., Chambaud I., Ferris S., Prevost M. C., Sasaki T., Montagnier L., Blanchard A. 1999; Phase variations of the Mycoplasma penetrans main surface lipoprotein increase antigenic diversity. Infect Immun 67:1569–1578
    [Google Scholar]
  27. Noormohammadi A. H., Markham P. F., Kanci A., Whithear K. G., Browning G. F. 2000; A novel mechanism for control of antigenic variation in the haemagglutinin gene family of Mycoplasma synoviae . Mol Microbiol 35:911–923
    [Google Scholar]
  28. Recchia G. D., Sherratt D. J. 1999; Conservation of xer site-specific recombination genes in bacteria. Mol Microbiol 34:1146–1148
    [Google Scholar]
  29. Ron Y., Flitman-Tene R., Dybvig K., Yogev D. 2002; Identification and characterization of a site-specific tyrosine recombinase within the variable loci of Mycoplasma bovis , Mycoplasma pulmonis and Mycoplasma agalactiae . Gene 292:205–211
    [Google Scholar]
  30. Rosengarten R., Citti C., Glew M., Lischewski A., Droesse M., Much P., Winner F., Brank M., Spergser J. 2000; Host-pathogen interactions in mycoplasma pathogenesis: virulence and survival strategies of minimalist prokaryotes. Int J Med Microbiol 290:15–25
    [Google Scholar]
  31. Röske K., Blanchard A., Chambaud I., Citti C., Helbig J. H., Prévost M. C., Rosengarten R., Jacobs E. 2001; Phase variation among major surface antigens of Mycoplasma penetrans . Infect Immun 69:7642–7651
    [Google Scholar]
  32. Rottem S. 2003; Interaction of mycoplasmas with host cells. Physiol Rev 83:417–432
    [Google Scholar]
  33. Sasaki Y. 2006; Mycoplasma. In Bacterial Genomes and Infectious Diseases pp 175–190 Edited by Chan V. L., Sherman P. M., Bourke B. Totowa, NJ: Humana Press;
    [Google Scholar]
  34. Sasaki Y., Ishikawa J., Yamashita A., Oshima K., Kenri T., Furuya K., Yoshino C., Horino A., Shiba T. other authors 2002; The complete genomic sequence of Mycoplasma penetrans , an intracellular bacterial pathogen in humans. Nucleic Acids Res 30:5293–5300
    [Google Scholar]
  35. Shen X., Gumulak J., Yu H., French C. T., Zou N., Dybvig K. 2000; Gene rearrangements in the vsa locus of Mycoplasma pulmonis . J Bacteriol 182:2900–2908
    [Google Scholar]
  36. Sitaraman R., Denison A. M., Dybvig K. 2002; A unique, bifunctional site-specific DNA recombinase from Mycoplasma pulmonis . Mol Microbiol 46:1033–1040
    [Google Scholar]
  37. Wada M., Kano Y., Ogawa T., Okazaki T., Imamoto F. 1988; Construction and characterization of the deletion mutant of hupA and hupB genes in Escherichia coli . J Mol Biol 204:581–591
    [Google Scholar]
  38. Wada M., Kutsukake K., Komano T., Imamoto F., Kano Y. 1989; Participation of the hup gene product in site-specific DNA inversion in Escherichia coli . Gene 76:345–352
    [Google Scholar]
  39. Waites K. B., Katz B., Schelonka R. L. 2005; Mycoplasmas and Ureaplasmas as neonatal pathogens. Clin Microbiol Rev 18:757–789
    [Google Scholar]
  40. Yáñez A., Cedillo L., Neyrolles O., Alonso E., Prévost M. C., Rojas J., Watson H. L., Blanchard A., Cassell G. H. 1999; Mycoplasma penetrans bacteremia and primary antiphospholipid syndrome. Emerg Infect Dis 5:164–167
    [Google Scholar]
  41. Yogev D., Rosengarten R., Watson-McKown R., Wise K. S. 1991; Molecular basis of Mycoplasma surface antigenic variation: a novel set of divergent genes undergo spontaneous mutation of periodic coding regions and 5′ regulatory sequences. EMBO J 10:4069–4079
    [Google Scholar]
  42. Yogev D., Browning G. F., Wise K. S. 2002; Genetic mechanisms of surface variation. In Molecular Biology and Pathogenicity of Mycoplasmas pp 417–443 Edited by Razin R., Herrmann S. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025437-0
Loading
/content/journal/micro/10.1099/mic.0.025437-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error