1887

Abstract

Chronic lung infection with and excessive neutrophil-associated inflammation are major causes of morbidity and mortality in patients with cystic fibrosis (CF). Overproduction of an exopolysaccharide known as alginate leads to the formation of mucoid biofilms that are resistant to antibiotics and host defences. Alginate overproduction or mucoidy is controlled by a stress-related ECF sigma factor AlgU/T. Mutation in the anti-sigma factor MucA is a known mechanism for conversion to mucoidy. Recently, we showed that inactivation of a kinase (KinB) in nonmucoid strain PAO1 results in overproduction of alginate. Here, we report the initial characterization of lipotoxin F (LptF, PA3692), an OmpA-like outer membrane protein that exhibited increased expression in the mucoid PAO1 mutant. The lipotoxin family of proteins has been previously shown to induce inflammation in lung epithelia, which may play a role in CF disease progression. Expression of LptF was observed to be AlgU-dependent and upregulated in CF isolates. Deletion of from the mutant had no effect on alginate production. Deletion of from PAO1 caused a differential susceptibility to oxidants that can be generated by phagocytes. The and mutants were more sensitive to hypochlorite than PAO1. However, the mutant displayed increased resistance to hydrogen peroxide. LptF also contributed to adhesion to A549 human lung epithelial cells. Our data suggest that LptF is an outer membrane protein that may be important for survival in harsh environments, including lung colonization in CF.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025833-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1028.html?itemId=/content/journal/micro/10.1099/mic.0.025833-0&mimeType=html&fmt=ahah

References

  1. Babu M. M., Priya M. L., Selvan A. T., Madera M., Gough J., Aravind L., Sankaran K. 2006; A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 188:2761–2773
    [Google Scholar]
  2. Baynham P. J., Ramsey D. M., Gvozdyev B. V., Cordonnier E. M., Wozniak D. J. 2006; The Pseudomonas aeruginosa ribbon–helix–helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 188:132–140
    [Google Scholar]
  3. Burns J. L., Gibson R. L., McNamara S., Yim D., Emerson J., Rosenfeld M., Hiatt P., McCoy K., Castile R. other authors 2001; Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 183:444–452
    [Google Scholar]
  4. Costerton J. W. 2001; Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9:50–52
    [Google Scholar]
  5. Damron F. H., Qiu D., Yu H. 2009; Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J Bacteriol in press doi: 10.1128/JB.01490-08
    [Google Scholar]
  6. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298
    [Google Scholar]
  7. Deretic V., Gill J. F., Chakrabarty A. M. 1987; Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa . J Bacteriol 169:351–358
    [Google Scholar]
  8. Feldman M., Bryan R., Rajan S., Scheffler L., Brunnert S., Tang H., Prince A. 1998; Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66:43–51
    [Google Scholar]
  9. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  10. Firoved A. M., Deretic V. 2003; Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa . J Bacteriol 185:1071–1081
    [Google Scholar]
  11. Firoved A. M., Boucher J. C., Deretic V. 2002; Global genomic analysis of AlgU ( σ E)-dependent promoters (sigmulon) in Pseudofmonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 184:1057–1064
    [Google Scholar]
  12. Firoved A. M., Ornatowski W., Deretic V. 2004; Microarray analysis reveals induction of lipoprotein genes in mucoid Pseudomonas aeruginosa : implications for inflammation in cystic fibrosis. Infect Immun 72:5012–5018
    [Google Scholar]
  13. Goldberg J. B., Ohman D. E. 1984; Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol 158:1115–1121
    [Google Scholar]
  14. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  15. Hanna S. L., Sherman N. E., Kinter M. T., Goldberg J. B. 2000; Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology 146:2495–2508
    [Google Scholar]
  16. Hayashi F., Smith K. D., Ozinsky A., Hawn T. R., Yi E. C., Goodlett D. R., Eng J. K., Akira S., Underhill D. M., Aderem A. other authors 2001; The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103
    [Google Scholar]
  17. Head N. E., Yu H. 2004; Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa : biofilm formation, virulence, and genome diversity. Infect Immun 72:133–144
    [Google Scholar]
  18. Hoang T. T., Kutchma A. J., Becher A., Schweizer H. P. 2000; Integration-proficient plasmids for Pseudomonas aeruginosa : site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:59–72
    [Google Scholar]
  19. Ishimoto K. S., Lory S. 1989; Formation of pilin in Pseudomonas aeruginosa requires the alternative σ factor (RpoN) of RNA polymerase. Proc Natl Acad Sci U S A 86:1954–1957
    [Google Scholar]
  20. Jacob-Dubuisson F., Locht C., Antoine R. 2001; Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40:306–313
    [Google Scholar]
  21. Lazar S. W., Kolter R. 1996; SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol 178:1770–1773
    [Google Scholar]
  22. Learn D. B., Brestel E. P., Seetharama S. 1987; Hypochlorite scavenging by Pseudomonas aeruginosa alginate. Infect Immun 55:1813–1818
    [Google Scholar]
  23. Leech A. J., Sprinkle A., Wood L., Wozniak D. J., Ohman D. E. 2008; The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa , binds directly to the algD promoter. J Bacteriol 190:581–589
    [Google Scholar]
  24. Lewenza S., Gardy J. L., Brinkman F. S., Hancock R. E. 2005; Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res 15:321–329
    [Google Scholar]
  25. Lyczak J. B., Cannon C. L., Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222
    [Google Scholar]
  26. Ma S., Wozniak D. J., Ohman D. E. 1997; Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB . J Biol Chem 272:17952–17960
    [Google Scholar]
  27. Ma S., Selvaraj U., Ohman D. E., Quarless R., Hassett D. J., Wozniak D. J. 1998; Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa . J Bacteriol 180:956–968
    [Google Scholar]
  28. Martin D. W., Schurr M. J., Mudd M. H., Govan J. R., Holloway B. W., Deretic V. 1993; Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377–8381
    [Google Scholar]
  29. Miller J. H. 1972; Beta-galactosidase assay. In Experiments in Molecular Genetics pp 352–355 Edited by Miller J. H. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Nouwens A. S., Beatson S. A., Whitchurch C. B., Walsh B. J., Schweizer H. P., Mattick J. S., Cordwell S. J. 2003; Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. Microbiology 149:1311–1322
    [Google Scholar]
  31. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304
    [Google Scholar]
  32. Qiu D., Eisinger V. M., Rowen D. W., Yu H. D. 2007; Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 104:8107–8112
    [Google Scholar]
  33. Qiu D., Damron F. H., Mima T., Schweizer H. P., Yu H. D. 2008; PBAD-based shuttle vectors and functional analysis of toxic and highly regulated genes in Pseudomonas and Burkholderia spp. and other bacteria. Appl Environ Microbiol 74:7422–7426
    [Google Scholar]
  34. Rowen D. W., Deretic V. 2000; Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol 36:314–327
    [Google Scholar]
  35. Salunkhe P., Smart C. H., Morgan J. A., Panagea S., Walshaw M. J., Hart C. A., Geffers R., Tummler B., Winstanley C. 2005; A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 187:4908–4920
    [Google Scholar]
  36. Schurr M. J., Yu H., Martinez-Salazar J. M., Boucher J. C., Deretic V. 1996; Control of AlgU, a member of the σ E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 178:4997–5004
    [Google Scholar]
  37. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079
    [Google Scholar]
  38. Schweizer H. P., Hoang T. T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa . Gene 158:15–22
    [Google Scholar]
  39. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764
    [Google Scholar]
  40. Skindersoe M. E., Alhede M., Phipps R., Yang L., Jensen P. O., Rasmussen T. B., Bjarnsholt T., Tolker-Nielsen T., Høiby N., Givskov M. 2008; Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa . Antimicrob Agents Chemother 52:3648–3663
    [Google Scholar]
  41. Smith S. G. J., Mahon V., Lambert M. A., Fagan R. P. 2007; A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1–11
    [Google Scholar]
  42. Sriramulu D. D., Nimtz M., Romling U. 2005; Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment. Proteomics 5:3712–3721
    [Google Scholar]
  43. Tart A. H., Blanks M. J., Wozniak D. J. 2006; The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol 188:6483–6489
    [Google Scholar]
  44. Totten P. A., Lara J. C., Lory S. 1990; The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172:389–396
    [Google Scholar]
  45. Wood L. F., Leech A. J., Ohman D. E. 2006; Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa : roles of σ 22 (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426
    [Google Scholar]
  46. Wozniak D. J., Keyser R. 2004; Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa . Chest 125:62S–69S quiz 69S
    [Google Scholar]
  47. Wozniak D. J., Ohman D. E. 1994; Transcriptional analysis of the Pseudomonas aeruginosa genes algR , algB , and algD reveals a hierarchy of alginate gene expression which is modulated by algT . J Bacteriol 176:6007–6014
    [Google Scholar]
  48. Zaborina O., Dhiman N., Ling Chen M., Kostal J., Holder I. A., Chakrabarty A. M. 2000; Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microbiology 146:2521–2530
    [Google Scholar]
  49. Zhang Z., Louboutin J. P., Weiner D. J., Goldberg J. B., Wilson J. M. 2005; Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect Immun 73:7151–7160
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025833-0
Loading
/content/journal/micro/10.1099/mic.0.025833-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error