1887

Abstract

is a blood-borne pathogen transmitted by the argasid tick . Since spirochaete clearance in mice is associated with an IgM-mediated response, an immunoproteomic analysis was used to identify proteins reactive with IgM. We report that IgM from both mice and human patients infected with not only reacted with the previously identified variable membrane proteins but also identified candidate antigens including heat-shock proteins, an adhesin protein, ABC transporter proteins, flagellar proteins, housekeeping proteins, an immune evasion protein, and proteins with unknown function. Furthermore, IgM reactivity to recombinant glycerophosphodiester phosphodiesterase was detected during early spirochaete infection and prior to a detectable IgG response. Lastly, a conserved hypothetical protein was produced in and tested with immune serum against and . These results identify a much larger set of immunoreactive proteins, and could help in the early serodiagnosis of this tick-borne infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029918-0
2009-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2641.html?itemId=/content/journal/micro/10.1099/mic.0.029918-0&mimeType=html&fmt=ahah

References

  1. Alugupalli K. R. 2008; A distinct role for B1b lymphocytes in T cell-independent immunity. Curr Top Microbiol Immunol 319:105–130
    [Google Scholar]
  2. Alugupalli K. R., Gerstein R. M., Chen J., Szomolanyi-Tsuda E., Woodland R. T., Leong J. M. 2003a; The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J Immunol 170:3819–3827
    [Google Scholar]
  3. Alugupalli K. R., Michelson A. D., Joris I., Schwan T. G., Hodivala-Dilke K., Hynes R. O., Leong J. M. 2003b; Spirochete-platelet attachment and thrombocytopenia in murine relapsing fever borreliosis. Blood 102:2843–2850
    [Google Scholar]
  4. Alugupalli K. R., Leong J. M., Woodland R. T., Muramatsu M., Honjo T., Gerstein R. M. 2004; B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21:379–390
    [Google Scholar]
  5. Anda P., Backenson P. B., Coleman J. L., Benach J. L. 1994; Epitopes shared by unrelated antigens of Borrelia burgdorferi . Infect Immun 62:1070–1078
    [Google Scholar]
  6. Anda P., Gebbia J. A., Backenson B., Coleman J. L., Benach J. L. 1996; A glyceraldehyde-3-phosphate dehydrogenase homolog in Borrelia burgdorferi and Borrelia hermsii . Infect Immun 64:262–268
    [Google Scholar]
  7. Balasubramanian S., Kannan T. R., Baseman J. B. 2008; The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor-Tu interacts with fibronectin. Infect Immun 76:3116–3123
    [Google Scholar]
  8. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525
    [Google Scholar]
  9. Barbour A. G. 1990; Antigenic variation of a relapsing fever Borrelia species. Annu Rev Microbiol 44:155–171
    [Google Scholar]
  10. Barbour A. G., Bundoc V. 2001; In vitro and in vivo neutralization of the relapsing fever agent Borrelia hermsii with serotype-specific immunoglobulin M antibodies. Infect Immun 69:1009–1015
    [Google Scholar]
  11. Barbour A. G., Hayes S. F. 1986; Biology of Borrelia species. Microbiol Rev 50:381–400
    [Google Scholar]
  12. Barbour A. G., Hayes S. F., Heiland R. A., Schrumpf M. E., Tessier S. L. 1986; A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun 52:549–554
    [Google Scholar]
  13. Barbour A. G., Dai Q., Restrepo B. I., Stoenner H. G., Frank S. A. 2006; Pathogen escape from host immunity by a genome program for antigenic variation. Proc Natl Acad Sci U S A 103:18290–18295
    [Google Scholar]
  14. Barbour A. G., Jasinskas A., Kayala M. A., Davies D. H., Steere A. C., Baldi P., Felgner P. L. 2008; A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi . Infect Immun 76:3374–3389
    [Google Scholar]
  15. Battisti J. M., Raffel S. J., Schwan T. G. 2008; A system for site-specific genetic manipulation of the relapsing fever spirochete Borrelia hermsii . Methods Mol Biol 431:69–84
    [Google Scholar]
  16. Belperron A. A., Dailey C. M., Bockenstedt L. K. 2005; Infection-induced marginal zone B cell production of Borrelia hermsii-specific antibody is impaired in the absence of CD1d. J Immunol 174:5681–5686
    [Google Scholar]
  17. Bercic R. L., Slavec B., Lavric M., Narat M., Bidovec A., Dovc P., Bencina D. 2008; Identification of major immunogenic proteins of Mycoplasma synoviae isolates. Vet Microbiol 127:147–154
    [Google Scholar]
  18. Bono J. L., Tilly K., Stevenson B., Hogan D., Rosa P. 1998; Oligopeptide permease in Borrelia burgdorferi: putative peptide-binding components encoded by both chromosomal and plasmid loci. Microbiology 144:1033–1044
    [Google Scholar]
  19. Brown J. S., Ogunniyi A. D., Woodrow M. C., Holden D. W., Paton J. C. 2001; Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect Immun 69:6702–6706
    [Google Scholar]
  20. Bryceson A. D., Parry E. H., Perine P. L., Warrell D. A., Vukotich D., Leithead C. S. 1970; Louse-borne relapsing fever. Q J Med 39:129–170
    [Google Scholar]
  21. Bunikis J., Noppa L., Ostberg Y., Barbour A. G., Bergström S. 1996; Surface exposure and species specificity of an immunoreactive domain of a 66-kilodalton outer membrane protein (P66) of the Borrelia spp. that cause Lyme disease. Infect Immun 64:5111–5116
    [Google Scholar]
  22. Bunikis J., Luke C. J., Bunikiene E., Bergström S., Barbour A. G. 1998; A surface-exposed region of a novel outer membrane protein (P66) of Borrelia spp. is variable in size and sequence. J Bacteriol 180:1618–1623
    [Google Scholar]
  23. Bunk S., Susnea I., Rupp J., Summersgill J. T., Maass M., Stegmann W., Schrattenholz A., Wendel A., Przybylski M., Hermann C. 2008; Immunoproteomic identification and serological responses to novel Chlamydia pneumoniae antigens that are associated with persistent C. pneumoniae infections. J Immunol 180:5490–5498
    [Google Scholar]
  24. Burgdorfer W. 1951; Analyse des Infektionsverlaufes bei Ornithodorus moubata (Murray) und der naturlichen Uebertragung von Spirochaeta duttoni . Acta Trop 8:194–262
    [Google Scholar]
  25. Burman N., Bergström S., Restrepo B. I., Barbour A. G. 1990; The variable antigens Vmp7 and Vmp21 of the relapsing fever bacterium Borrelia hermsii are structurally analogous to the VSG proteins of the African trypanosome. Mol Microbiol 4:1715–1726
    [Google Scholar]
  26. Buxton P. A. 1946 The Louse. An Account of the Lice Which Infest Man, Their Medical Importance and Control , 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  27. Coffey E. M., Eveland W. C. 1967; Experimental relapsing fever initiated by Borrelia hermsi. II. Sequential appearance of major serotypes in the rat. J Infect Dis 117:29–34
    [Google Scholar]
  28. Coleman J. L., Benach J. L. 1989; Identification and characterization of an endoflagellar antigen of Borrelia burgdorferi . J Clin Invest 84:322–330
    [Google Scholar]
  29. Coleman J. L., Benach J. L. 1992; Characterization of antigenic determinants of Borrelia burgdorferi shared by other bacteria. J Infect Dis 165:658–666
    [Google Scholar]
  30. Collins C., Peltz G. 1991; Immunoreactive epitopes on an expressed recombinant flagellar protein of Borrelia burgdorferi . Infect Immun 59:514–520
    [Google Scholar]
  31. Colombo M. J., Alugupalli K. R. 2008; Complement factor H-binding protein, a putative virulence determinant of Borrelia hermsii, is an antigenic target for protective B1b lymphocytes. J Immunol 180:4858–4864
    [Google Scholar]
  32. Connolly S. E., Thanassi D. G., Benach J. L. 2004; Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia . J Immunol 172:1191–1197
    [Google Scholar]
  33. Da'dara A. A., Li Y. S., Xiong T., Zhou JWilliams G. M., McManus D. P., Feng Z., Yu X. L., Gray D. J., Harn D. A. 2008; DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine 26:3617–3625
    [Google Scholar]
  34. Dai Q., Restrepo B. I., Porcella S. F., Raffel S. J., Schwan T. G., Barbour A. G. 2006; Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol 60:1329–1343
    [Google Scholar]
  35. Delepelaire P. 2004; Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694:149–161
    [Google Scholar]
  36. Delvecchio V. G., Connolly J. P., Alefantis T. G., Walz A., Quan M. A., Patra G., Ashton J. M., Whittington J. T., Chafin R. D. other authors 2006; Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis . Appl Environ Microbiol 72:6355–6363
    [Google Scholar]
  37. Dworkin M. S., Schwan T. G., Anderson D. E. 2002; Tick-borne relapsing fever in North America. Med Clin North Am 86:417–433
    [Google Scholar]
  38. Felsenfeld O. 1971 Borrelia. Strains, Vectors, Human and Animal Borreliosis St Louis, MO: Warren H. Green, Inc;
    [Google Scholar]
  39. Frisk A., Lagergard T. 1998; Characterization of mechanisms involved in adherence of Haemophilus ducreyi to eukaryotic cells. APMIS 106:539–546
    [Google Scholar]
  40. Frisk A., Ison C. A., Lagergard T. 1998; GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect Immun 66:1252–1257
    [Google Scholar]
  41. Garmory H. S., Titball R. W. 2004; ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 72:6757–6763
    [Google Scholar]
  42. Granato D., Bergonzelli G. E., Pridmore R. D., Marvin L., Rouvet M., Corthesy-Theulaz I. E. 2004; Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160–2169
    [Google Scholar]
  43. Harland D. N., Chu K., Haque A., Nelson M., Walker N. J., Sarkar-Tyson M., Atkins T. P., Moore B., Brown K. A. other authors 2007; Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis. Infect Immun 75:4173–4180
    [Google Scholar]
  44. Hayes L. J., Wright D. J. M., Archard L. C. 1988; Segmented arrangement of Borrelia duttonii DNA and location of variant surface antigen genes. J Gen Microbiol 134:1785–1793
    [Google Scholar]
  45. Hovis K. M., Schriefer M. E., Bahlani S., Marconi R. T. 2006; Immunological and molecular analyses of the Borrelia hermsii factor H and factor H-like protein 1 binding protein, FhbA: demonstration of its utility as a diagnostic marker and epidemiological tool for tick-borne relapsing fever. Infect Immun 74:4519–4529
    [Google Scholar]
  46. Huesca M., Borgia S., Hoffman P., Lingwood C. A. 1996; Acidic pH changes receptor binding specificity of Helicobacter pylori: a binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization. Infect Immun 64:2643–2648
    [Google Scholar]
  47. Jomaa M., Yuste J., Paton J. C., Jones C., Dougan G., Brown J. S. 2005; Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae . Infect Immun 73:6852–6859
    [Google Scholar]
  48. Kornacki J. A., Oliver D. B. 1998; Lyme disease-causing Borrelia species encode multiple lipoproteins homologous to peptide-binding proteins of ABC-type transporters. Infect Immun 66:4115–4122
    [Google Scholar]
  49. Lewthwaite J., Skinner A., Henderson B. 1998; Are molecular chaperones microbial virulence factors?. Trends Microbiol 6:426–428
    [Google Scholar]
  50. Lewthwaite J. C., Coates A. R., Tormay P., Singh M., Mascagni P., Poole S., Roberts M., Sharp L., Henderson B. 2001; Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69:7349–7355
    [Google Scholar]
  51. Lewthwaite J., George R., Lund P. A., Poole S., Tormay P., Sharp L., Coates A. R., Henderson B. 2002; Rhizobium leguminosarum chaperonin 60.3, but not chaperonin 60.1, induces cytokine production by human monocytes: activity is dependent on interaction with cell surface CD14. Cell Stress Chaperones 7:130–136
    [Google Scholar]
  52. Lewthwaite J. C., Clarkin C. E., Coates A. R., Poole S., Lawrence R. A., Wheeler-Jones C. P., Pitsillides A. A., Singh M., Henderson B. 2007; Highly homologous Mycobacterium tuberculosis chaperonin 60 proteins with differential CD14 dependencies stimulate cytokine production by human monocytes through cooperative activation of p38 and ERK1/2 mitogen-activated protein kinases. Int Immunopharmacol 7:230–240
    [Google Scholar]
  53. Melkert P. W. 1991; Mortality in high risk patients with tick-borne relapsing fever analysed by the Borrelia-index. East Afr Med J 68:875–879
    [Google Scholar]
  54. Newman K. Jr, Johnson R. C. 1984; T-cell-independent elimination of Borrelia turicatae . Infect Immun 45:572–576
    [Google Scholar]
  55. Nordstrand A., Bunikis I., Larsson C., Tsogbe K., Schwan T. G., Nilsson M., Bergström S. 2007; Tickborne relapsing fever diagnosis obscured by malaria, Togo. Emerg Infect Dis 13:117–123
    [Google Scholar]
  56. Porcella S. F., Raffel S. J., Schrumpf M. E., Schriefer M. E., Dennis D. T., Schwan T. G. 2000; Serodiagnosis of louse-borne relapsing fever with glycerophosphodiester phosphodiesterase (GlpQ) from Borrelia recurrentis . J Clin Microbiol 38:3561–3571
    [Google Scholar]
  57. Ratnakar P., Rao S. P., Catanzaro A. 1996; Isolation and characterization of a 70 kDa protein from Mycobacterium avium . Microb Pathog 21:471–486
    [Google Scholar]
  58. Restrepo B. I., Kitten T., Carter C. J., Infante D., Barbour A. G. 1992; Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic. Mol Microbiol 6:3299–3311
    [Google Scholar]
  59. Rossmann E., Kraiczy P., Herzberger P., Skerka C., Kirschfink M., Simon M. M., Zipfel P. F., Wallich R. 2007; Dual binding specificity of a Borrelia hermsii-associated complement regulator-acquiring surface protein for factor H and plasminogen discloses a putative virulence factor of relapsing fever spirochetes. J Immunol 178:7292–7301
    [Google Scholar]
  60. Schneider T., Lange R., Ronspeck W., Weigelt W., Kolmel H. W. 1992; Prognostic B-cell epitopes on the flagellar protein of Borrelia burgdorferi . Infect Immun 60:316–319
    [Google Scholar]
  61. Schwan T. G., Piesman J. 2002; Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerg Infect Dis 8:115–121
    [Google Scholar]
  62. Schwan T. G., Kime K. K., Schrumpf M. E., Coe J. E., Simpson W. J. 1989; Antibody response in white-footed mice ( Peromyscus leucopus) experimentally infected with the Lyme disease spirochete ( Borrelia burgdorferi . Infect Immun 57:3445–3451
    [Google Scholar]
  63. Schwan T. G., Schrumpf M. E., Hinnebusch B. J., Anderson D. E., Konkel M. E. 1996; GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol 34:2483–2492
    [Google Scholar]
  64. Schwan T. G., Battisti J. M., Porcella S. F., Raffel S. J., Schrumpf M. E., Fischer E. R., Carroll J. A., Stewart P. E., Rosa P., Somerville G. A. 2003; Glycerol-3-phosphate acquisition in spirochetes: distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) among Borrelia spirochetes. J Bacteriol 185:1346–1356
    [Google Scholar]
  65. Sellman B. R., Howell A. P., Kelly-Boyd C., Baker S. M. 2005; Identification of immunogenic and serum binding proteins of Staphylococcus epidermidis . Infect Immun 73:6591–6600
    [Google Scholar]
  66. Shah P., Swiatlo E. 2006; Immunization with polyamine transport protein PotD protects mice against systemic infection with Streptococcus pneumoniae . Infect Immun 74:5888–5892
    [Google Scholar]
  67. Shang E. S., Skare J. T., Exner M. M., Blanco D. R., Kagan B. L., Miller J. N., Lovett M. A. 1998; Isolation and characterization of the outer membrane of Borrelia hermsii . Infect Immun 66:1082–1091
    [Google Scholar]
  68. Southern P. M., Sanford J. P. 1969; Relapsing fever: a clinical and microbiological review. Medicine 48:129–149
    [Google Scholar]
  69. Stoenner H. G., Dodd T., Larsen C. 1982; Antigenic variation of Borrelia hermsii . J Exp Med 156:1297–1311
    [Google Scholar]
  70. Tanabe M., Atkins H. S., Harland D. N., Elvin S. J., Stagg A. J., Mirza O., Titball R. W., Byrne B., Brown K. A. 2006; The ABC transporter protein OppA provides protection against experimental Yersinia pestis infection. Infect Immun 74:3687–3691
    [Google Scholar]
  71. Tanghe A., Lefèvre P., Denis O., D'Souza S., Braibant M., Lozes E., Singh M., Montgomery D., Content J., Huygen K. 1999; Immunogenicity and protective efficacy of tuberculosis DNA vaccines encoding putative phosphate transport receptors. J Immunol 162:1113–1119
    [Google Scholar]
  72. Yamaguchi H., Osaki T., Taguchi H., Hanawa T., Yamamoto T., Kamiya S. 1996; Flow cytometric analysis of the heat shock protein 60 expressed on the cell surface of Helicobacter pylori . J Med Microbiol 45:270–277
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029918-0
Loading
/content/journal/micro/10.1099/mic.0.029918-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error