1887

Abstract

catabolizes -tartrate under anaerobic conditions to oxaloacetate by the use of -tartrate/succinate antiporter TtdT and -tartrate dehydratase TtdAB. Subsequently, -malate is channelled into fumarate respiration and degraded to succinate by the use of fumarase FumB and fumarate reductase FrdABCD. The genes encoding the latter pathway ( and ) are transcriptionally activated by the DcuS–DcuR two-component system. Expression of the -tartrate-specific operon encoding TtdAB and TtdT was stimulated by the LysR-type gene regulator TtdR in the presence of - and -tartrate, and repressed by O and nitrate. Anaerobic expression required a functional gene, and nitrate repression depended on NarL and NarP. Expression of , encoding TtdR, was repressed by O, nitrate and glucose, and positively regulated by TtdR and DcuS. Purified TtdR specifically bound to the promoter region. TtdR was also required for full expression of the DcuS–DcuR-dependent gene in the presence of tartrate. Overall, expression of the genes is subject to -/-tartrate-dependent induction, and to aerobic and nitrate repression. The control is exerted directly at and in addition indirectly by regulating TtdR levels. TtdR recognizes a subgroup (- and -tartrate) of the stimuli perceived by the sensor DcuS, which responds to all C-dicarboxylates; both systems apparently communicate by mutual regulation of the regulatory genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031401-0
2009-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3632.html?itemId=/content/journal/micro/10.1099/mic.0.031401-0&mimeType=html&fmt=ahah

References

  1. Bongaerts J., Zoske S., Weidner U., Unden G. 1995; Transcriptional regulation of the proton translocating NADH dehydrogenase genes ( nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulators. Mol Microbiol 16:521–534
    [Google Scholar]
  2. Cherepanov P. P., Wackernagel W. 1995; Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14
    [Google Scholar]
  3. Cole S. T., Condon C., Lemire B. D., Weiner J. H. 1985; Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli . Biochim Biophys Acta 811:381–403
    [Google Scholar]
  4. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in E. coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  5. Engel P., Krämer R., Unden G. 1994; Transport of C4-dicarboxylates by anaerobically grown Escherichia coli: energetics and mechanism of exchange, uptake and efflux. Eur J Biochem 222:605–614
    [Google Scholar]
  6. Falzone C. J., Karsten W. E., Conley J. D., Viola R. E. 1988; l-Aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. Biochemistry 27:9089–9093
    [Google Scholar]
  7. Goh E.-B., Bledssoe P. J., Chen L.-L., Gyaneshwar P., Stewart V., Igo M. M. 2005; Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. J Bacteriol 187:4890–4899
    [Google Scholar]
  8. Golby P., Kelly D. J., Guest J. R., Andrews S. C. 1998; Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli . J Bacteriol 180:6586–6596
    [Google Scholar]
  9. Golby P., Davies S., Kelly D. J., Guest J. R., Andrews S. C. 1999; Identification and characterization of a two-component sensor-kinase and response regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli . J Bacteriol 181:1238–1248
    [Google Scholar]
  10. Guest J. R., Green J., Irvine A. S., Spiro S. 1996; The FNR modulon and FNR regulated gene expression. In Regulation of Gene Expression in Escherichia coli pp 317–342 Edited by Lin E. C. C., Lynch A. S. New York: Chapman and Hall;
    [Google Scholar]
  11. Gunsalus R. P. 1992; Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol 174:7069–7074
    [Google Scholar]
  12. Janausch I. G., Zientz E., Tran Q. H., Kröger A., Unden G. 2002; C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta 1553:39–56
    [Google Scholar]
  13. Kim O. B., Unden G. 2007; The l-tartrate/succinate antiporter TtdT (YgjE) of l-tartrate fermentation in Escherichia coli . J Bacteriol 189:1597–1603
    [Google Scholar]
  14. Kim O. B., Lux S., Unden G. 2007; Anaerobic growth of Escherichia coli on d-tartrate is independent of d- or l-tartrate specific transporters and enzymes. Arch Microbiol 188:583–589
    [Google Scholar]
  15. Kleefeld A., Ackermann B., Bauer J., Krämer J., Unden G. 2009; The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS-dependent gene expression. J Biol Chem 284:265–275
    [Google Scholar]
  16. Kneuper H., Janausch I. G., Vijayan V., Zweckstetter M., Bock V., Griesinger C., Unden G. 2005; The nature of the stimulus and of the fumarate binding site of the fumarate sensor DcuS of Escherichia coli . J Biol Chem 280:20596–20603
    [Google Scholar]
  17. Lehnen D., Blumer C., Polen T., Wackwitz B., Wendisch V. F., Unden G. 2002; LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli . Mol Microbiol 45:521–532
    [Google Scholar]
  18. Miles J. S., Guest J. R. 1984; Complete nucleotide sequence of the fumarase gene fumA of Escherichia coli . Nucleic Acids Res 12:3631–3642
    [Google Scholar]
  19. Miles J. S., Guest J. R. 1987; Molecular genetic aspects of the citric acid cycle of Escherichia coli . In Krebs' Citric Acid Cycle pp 45–66 Edited by Kay J., Weitzman P. D. J. London: The Biochemical Society;
    [Google Scholar]
  20. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Münch R., Hiller K., Barg H., Erldt D., Linz S., Wingender E., Jahn D. 2003; PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 31:266–269
    [Google Scholar]
  22. Münch R., Hiller K., Grote A., Scheer M., Klein J., Schobert M., Jahn D. 2005; Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21:4187–4189
    [Google Scholar]
  23. Nimmo H. G. 1987; The tricarboxylic cycle and anaplerotic reactions. In Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology pp 156–159 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Oshima T., Biville F. 2006; Functional identification of ygiP as a positive regulator of the ttdA-ttdB-ygjE operon. Microbiology 152:2129–2135
    [Google Scholar]
  25. Ostrow K. S., Silhavy T. J., Garrett S. 1986; cis-Acting sites required for osmoregulation of ompF expression in Escherichia coli K-12. J Bacteriol 168:1165–1171
    [Google Scholar]
  26. Oyamada T., Yokoyama K., Morinaga M., Suzuki M., Makino K. 2007; Expression of Escherichia coli DcuS-R two-component regulatory system is regulated by the secondary internal promoter which is activated by CRP-cAMP. J Microbiol 45:234–240
    [Google Scholar]
  27. Reaney S. K., Begg C., Bungard S. J., Guest J. R. 1993; Identification of the l-tartratase genes ( ttdA and ttdB) of Escherichia coli and evolutionary relationship with the class I fumarase genes. J Gen Microbiol 139:1523–1530
    [Google Scholar]
  28. Ruffner H., Rast D. 1974; Die Biogenese von Tartrat in der Weinrebe. Z Pflanzenphysiol 73:45–55
    [Google Scholar]
  29. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sawers G. 1993; Specific transcriptional requirements for positive regulation of the anaerobically inducible pfl operon by ArcA and FNR. Mol Microbiol 10:737–747
    [Google Scholar]
  31. Schell M. A. 1993; Molecular biology of the LysR familiy of transcriptional regulators. Annu Rev Microbiol 47:597–626
    [Google Scholar]
  32. Silhavy T. J., Berman M., Enquist L. W. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Six S., Andrews S. C., Unden G., Guest J. R. 1994; Escherichia coli possesses two homologous anaerobic C4-dicarboxylate transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct. J Bacteriol 176:6470–6478
    [Google Scholar]
  34. Stewart V. 1993; Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli . Mol Microbiol 9:425–434
    [Google Scholar]
  35. Unden G., Bongaerts J. 1997; Alternative respiratory pathways for Escherichia coli: energetic and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320217–234
    [Google Scholar]
  36. Unden G., Kleefeld A. 2004; C4-dicarboxylate degradation in aerobic and anaerobic growth. Chapter 3.4.5. in EcoSal – Escherichia coli and Salmonella: Cellular and Molecular Biology Edited by Curtiss R. III Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Zientz E., Bongaerts J., Unden G. 1998; Fumarate regulation of gene expression in Escherichia coli by the DcuSR ( dcuSR) two-component regulatory system. J Bacteriol 180:5421–5425
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031401-0
Loading
/content/journal/micro/10.1099/mic.0.031401-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error