1887

Abstract

A phage (ΦOT8) isolated on sp. ATCC 39006 was shown to be flagellum-dependent, and to mediate generalized transduction with high efficiency (up to 10 transductants per p.f.u.). ΦOT8 was shown to have a broad host range because it also infected a strain of isolated from the rhizosphere. Transduction of plasmid-borne antibiotic resistance between the two bacterial genera was demonstrated, consistent with purported ecological roles of phages in dissemination of genes between bacterial genera. sp. ATCC 39006 and produce a number of interesting secondary metabolites that have potential applications in cancer therapy and biocontrol of fungal infections. ΦOT8 has utility as a powerful functional genomics tool in these bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032797-0
2010-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/240.html?itemId=/content/journal/micro/10.1099/mic.0.032797-0&mimeType=html&fmt=ahah

References

  1. Ammann A., Neve H., Geis A., Heller K. J. 2008; Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis. J Bacteriol 190:3083–3087
    [Google Scholar]
  2. Berg G., Roskot N., Steidle A., Eberl L., Zock A., Smalla K. 2002; Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338
    [Google Scholar]
  3. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. 1987; The isolation and characterisation of (3R,5R)- and (3S,5R)-carbapenem-3-carboxylic acid from Serratia and Erwinia species and their putative biosynthetic role. J Chem Soc Chem Commun 21:1623–1625
    [Google Scholar]
  4. Canchaya C., Fournous G., Brüssow H. 2004; The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18
    [Google Scholar]
  5. Chen J., Novick R. P. 2009; Phage-mediated intergeneric transfer of toxin genes. Science 323:139–141
    [Google Scholar]
  6. De Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  7. Demarre G., Guerout A.-M., Matsumoto-Mashimo C., Rowe-Magnus D. A., Marliere P., Mazel D. 2005; A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncP α) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol 156:245–255
    [Google Scholar]
  8. De Vries G. E., Raymond C. K., Ludwig R. A. 1984; Extension of bacteriophage λ host range: selection, cloning, and characterization of a constitutive λ receptor gene. Proc Natl Acad Sci U S A 81:6080–6084
    [Google Scholar]
  9. Enomoto M. 1966; Genetic studies of paralyzed mutants in Salmonella. I. Genetic fine structure of the mot loci in Salmonella typhimurium. Genetics 54:715–726
    [Google Scholar]
  10. Evans T. J., Trauner A., Komitopoulou E., Salmond G. P. C. 2009; Exploitation of a new flagellatropic phage of Erwinia for positive selection of bacterial mutants attenuated in plant virulence: towards phage therapy. J Appl Microbiol
    [Google Scholar]
  11. Fineran P. C., Everson L., Slater H., Salmond G. P. C. 2005a; A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology 151:3833–3845
    [Google Scholar]
  12. Fineran P. C., Slater H., Everson L., Hughes K., Salmond G. P. C. 2005b; Biosynthesis of tripyrrole and β-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517
    [Google Scholar]
  13. Fineran P. C., Williamson N. R., Lilley K. S., Salmond G. P. 2007; Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. J Bacteriol 189:7653–7662
    [Google Scholar]
  14. Ghelardi E., Celandroni F., Salvetti S., Beecher D. J., Gominet M., Lereclus D., Wong A. C. L., Senesi S. 2002; Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J Bacteriol 184:6424–6433
    [Google Scholar]
  15. Gill J. J., Svircev A. M., Smith R., Castle A. J. 2003; Bacteriophages of Erwinia amylovora. Appl Environ Microbiol 69:2133–2138
    [Google Scholar]
  16. Harris A. K., Williamson N. R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H. T., Leeper F. J., Salmond G. P. C. 2004; The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150:3547–3560
    [Google Scholar]
  17. Harshey R. M. 1988 The Bacteriophages vol. 1 pp 193–234 Edited by Calendar R. New York: Plenum;
  18. Heller K. J. 1992; Molecular interaction between bacteriophages and the Gram-negative cell envelope. Arch Microbiol 158:235–248
    [Google Scholar]
  19. Hendrix R. W. 2002; Bacteriophages: evolution of the majority. Theor Popul Biol 61:471–480
    [Google Scholar]
  20. Holliday R. 1956; A new method for the identification of biochemical mutants of micro-organisms. Nature 178:987–988
    [Google Scholar]
  21. Hossain M. M., Shibata S., Aizawa S.-I., Tsuyumu S. 2005; Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol Mol Plant Pathol 66:134–143
    [Google Scholar]
  22. Iida S., Streif M. B., Bickle T. A., Werner A. 1987; Two DNA antirestriction systems of bacteriophages P1, darA, and darB: characterization of darA phages. Virology 157:156–166
    [Google Scholar]
  23. Jensen E. C., Schrader H. S., Rieland B., Thompson T. L., Lee K. W., Nickerson K. W., Kokjohn T. A. 1998; Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64:575–580
    [Google Scholar]
  24. Jiang S. C., Paul J. H. 1998; Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64:2780–2787
    [Google Scholar]
  25. Kaiser D., Dworkin M. 1975; Gene transfer to a myxobacterium by Escherichia coli phage P1. Science 187:653–654
    [Google Scholar]
  26. Leffers G., Rao V. B. 1996; A discontinuous headful packaging model for packaging less than headful length DNA molecules by bacteriophage T4. J Mol Biol 258:839–850
    [Google Scholar]
  27. Lima-Mendez G., Toussaint A., Leplae R. 2007; Analysis of the phage sequence space: the benefit of structured information. Virology 365:241–249
    [Google Scholar]
  28. Lindberg A. A. 1973; Bacteriophage receptors. Annu Rev Microbiol 27:205–241
    [Google Scholar]
  29. Nguyen M., Marcellus R. C., Roulston A., Watson M., Serfass L., Madiraju S. R. M., Goulet D., Viallet J., Bélec L. other authors 2007; Small molecule obatoclax (GX15–070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A 104:19512–19517
    [Google Scholar]
  30. Palva E. T., Liljeström P., Harayama S. 1981; Cosmid cloning and transposon mutagenesis in Salmonella typhimurium using phage λ vehicles. Mol Gen Genet 181:153–157
    [Google Scholar]
  31. Petty N. K., Foulds I. F., Pradel E., Ewbank J. J., Salmond G. P. C. 2006; A generalized transducing phage (ΦIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiology 152:1701–1708
    [Google Scholar]
  32. Petty N. K., Toribio A. L., Goulding D., Foulds I., Thomson N., Dougan G., Salmond G. P. C. 2007; A generalized transducing phage for the muring pathogen Citrobacter rodentium. Microbiology 153:2984–2988
    [Google Scholar]
  33. Pitt T. L., Gaston M. A. 1995; Bacteriophage typing. Methods Mol Biol 46:15–26
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbr, NY: Cold Spring Harbor Laboratory;
  35. Schade S. Z., Adler J., Ris H. 1967; How bacteriophage χ attacks motile bacteria. J Virol 1:599–609
    [Google Scholar]
  36. Skerker J. M., Shapiro L. 2000; Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. EMBO J 19:3223–3234
    [Google Scholar]
  37. Slater H., Crow M., Everson L., Salmond G. P. C. 2003; Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320
    [Google Scholar]
  38. Smith D. S. 2005 Development of a positive selection strategy to investigate the regulation of quorum sensing in Erwinia PhD thesis University of Cambridge; UK:
  39. Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P. 2000; Biosynthesis of carbapenem and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556
    [Google Scholar]
  40. Tock M. R., Dryden D. T. 2005; The biology of restriction and anti-restriction. Curr Opin Microbiol 8:466–472
    [Google Scholar]
  41. Wentworth B. B. 1963; Bacteriophage typing of the staphylococci. Bacteriol Rev 27:253–272
    [Google Scholar]
  42. Williamson N. R., Simonsen H. T., Ahmed R. A., Goldet G., Slater H., Woodley L., Leeper F. J., Salmond G. P. C. 2005; Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3- n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56:971–989
    [Google Scholar]
  43. Williamson N. R., Fineran P. C., Leeper F. J., Salmond G. P. C. 2006; The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4:887–899
    [Google Scholar]
  44. Williamson N. R., Fineran P. C., Ogawa W., Woodley L. R., Salmond G. P. C. 2008; Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Environ Microbiol 10:1202–1217
    [Google Scholar]
  45. Yarmolinsky M. B., Sternberg N. 1988 The Bacteriophages vol. 1 pp 291–438 Edited by Calendar R. New York: Plenum;
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032797-0
Loading
/content/journal/micro/10.1099/mic.0.032797-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error