1887

Abstract

During the chronic lung infection of patients with cystic fibrosis (CF), can survive for long periods due to adaptive evolution mediated by genetic variation. Hypermutability is considered to play an important role in this adaptive evolution and it has been demonstrated that mutator populations are amplified in the CF lung by hitchhiking with adaptive mutations. Two of the genes that are frequently mutated in isolates from chronic infection are and . Loss-of-function mutations in these genes determine the phenotypic switch to mucoidy and loss of quorum sensing, which are considered hallmarks of chronic virulence. The aims of our study were to investigate (1) the genetic background of the subpopulations with non-mutator, weak or strong mutator phenotype and their dynamics during the chronic lung infection, and (2) the time sequence in which the hypermutable, mucoid and quorum-sensing-negative phenotypes emerge during chronic lung infection. For these purposes the sequences of , , , , and anti-mutator genes as well as of and were analysed in 70 sequential isolates obtained from the respiratory secretions of 10 CF patients (one to three isolates per time point). Analysis of the genetic background of the mutator phenotype showed that was the most commonly affected gene followed by in isolates with strong mutator phenotype. The , , genes were affected in isolates with low fold-changes in the mutation frequencies compared to the reference strain PAO1. Isolates with non-mutator, weak or strong mutator phenotype were represented at all time points showing co-existence of these subpopulations, which suggests parallel evolution of the various mutators in the different focal niches of infection in the CF lung. Mutations in and occurred earlier than mutations in the anti-mutator genes, showing that hypermutability is not a prerequisite for the acquisition of mucoidy and loss of quorum sensing, considered hallmarks of chronic virulence. Significantly higher mutation rates and MICs of ceftazidime, meropenem and ciprofloxacin were found for isolates collected late (more than 10 years) during the chronic lung infection compared to isolates collected earlier, which suggests an amplification of the mutator subpopulation by hitchhiking with development of antibiotic resistance. Similar evolutionary pathways concordant with adaptive radiation were observed in different clonal lineages of from CF patients.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033993-0
2010-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1108.html?itemId=/content/journal/micro/10.1099/mic.0.033993-0&mimeType=html&fmt=ahah

References

  1. Bjarnsholt T., Jensen P. O., Fiandaca M. J., Pedersen J., Hansen C. R., Andersen C. B., Pressler T., Givskov M., Høiby N. 2009; Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558
    [Google Scholar]
  2. Ciofu O., Giwercman B., Pedersen S. S., Høiby N. 1994; Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Center. APMIS 102:674–680
    [Google Scholar]
  3. Ciofu O., Jensen T., Pressler T., Johansen H. K., Koch C., Høiby N. 1996; Meropenem in cystic fibrosis patients infected with resistant Pseudomonas aeruginosa or Burkholderia cepacia and with hypersensitivity to beta-lactam antibiotics. Clin Microbiol Infect 2:91–98
    [Google Scholar]
  4. Ciofu O., Fussing V., Bagge N., Koch C., Høiby N. 2001; Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and RiboPrinting. J Antimicrob Chemother 48:391–396
    [Google Scholar]
  5. Ciofu O., Riis B., Pressler T., Poulsen H. E., Høiby N. 2005; Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282
    [Google Scholar]
  6. Ciofu O., Lee B., Johannesson M., Hermansen N. O., Meyer P., Høiby N. 2008; Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology 154:103–113
    [Google Scholar]
  7. D'Argenio D. A., Wu M., Hoffman L. R., Kulasekara H. D., Deziel E., Smith E. E., Nguyen H., Ernst R. K., Larson Freeman T. J. other authors 2007; Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64:512–533
    [Google Scholar]
  8. de Jong P. A., Nakano Y., Lequin M. H., Mayo J. R., Woods R., Pare P. D., Tiddens H. A. 2004; Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97
    [Google Scholar]
  9. Denamur E., Tenaillon O., Deschamps C., Skurnik D., Ronco E., Gaillard J. L., Picard B., Branger C., Matic I. 2005; Intermediate mutation frequencies favor evolution of multidrug resistance in Escherichia coli. Genetics 171:825–827
    [Google Scholar]
  10. Driffield K., Miller K., Bostock J. M., O'Neill A. J., Chopra I. 2008; Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61:1053–1056
    [Google Scholar]
  11. Ferroni A., Guillemot D., Moumile K., Bernede C., Le B. M., Waernessyckle S., Descamps P., Sermet-Gaudelus I., Lenoir G. other authors 2009; Effect of mutator P. aeruginosa on antibiotic resistance acquisition and respiratory function in cystic fibrosis. Pediatr Pulmonol 44:820–825
    [Google Scholar]
  12. Giraud A., Radman M., Matic I., Taddei F. 2001; The rise and fall of mutator bacteria. Curr Opin Microbiol 4:582–585
    [Google Scholar]
  13. Govan J. R., Fyfe J. A. 1978; Mucoid Pseudomonas aeruginosa and cystic fibrosis: resistance of the mucoid form to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. J Antimicrob Chemother 4:233–240
    [Google Scholar]
  14. Govan J. R., Nelson J. W. 1993; Microbiology of cystic fibrosis lung infections: themes and issues. J R Soc Med 86:11–18
    [Google Scholar]
  15. Hancock R. E., Mutharia L. M., Chan L., Darveau R. P., Speert D. P., Pier G. B. 1983; Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42:170–177
    [Google Scholar]
  16. Henrichfreise B., Wiegand I., Pfister W., Wiedemann B. 2007; Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51:4062–4070
    [Google Scholar]
  17. Hogardt M., Hoboth C., Schmoldt S., Henke C., Bader L., Heesemann J. 2007; Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 195:70–80
    [Google Scholar]
  18. Høiby N., Johansen H. K., Moser C., Ciofu O. 2008; Clinical relevance of Pseudomonas aeruginosa: a master of adaptation and survival strategies. In Pseudomonas Model Organism, Pathogen, Cell Factory Edited by Rehm B. H. A. Weinheim: Wiley-VCH GmbH & Co;
    [Google Scholar]
  19. Jain M., Ramirez D., Seshadri R., Cullina J. F., Powers C. A., Schulert G. S., Bar-Meir M., Sullivan C. L., McColley S. A., Hauser A. R. 2004; Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 42:5229–5237
    [Google Scholar]
  20. Jelsbak L., Johansen H. K., Frost A. L., Thogersen R., Thomsen L. E., Ciofu O., Yang L., Haagensen J. A., Høiby N., Molin S. 2007; Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 75:2214–2224
    [Google Scholar]
  21. Kenna D. T., Doherty C. J., Foweraker J., Macaskill L., Barcus V. A., Govan J. R. 2007; Hypermutability in environmental Pseudomonas aeruginosa and in populations causing pulmonary infection in individuals with cystic fibrosis. Microbiology 153:1852–1859
    [Google Scholar]
  22. Kolpen M., Hansen C. R., Bjarnsholt T., Moser C., Christensen L. D., van Gennip M., Ciofu O., Mandsberg L., Kharazmi A. other authors 2010; Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 65:57–62
    [Google Scholar]
  23. Lamers M. H., Perrakis A., Enzlin J. H., Winterwerp H. H., de Wind N., Sixma T. K. 2000; The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 407:711–717
    [Google Scholar]
  24. Lee B., Haagensen J. A., Ciofu O., Andersen J. B., Høiby N., Molin S. 2005; Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43:5247–5255
    [Google Scholar]
  25. Lujan A. M., Moyano A. J., Segura I., Argarana C. E., Smania A. M. 2007; Quorum-sensing-deficient ( lasR) mutants emerge at high frequency from a Pseudomonas aeruginosa mutS strain. Microbiology 153:225–237
    [Google Scholar]
  26. Luzar M. A., Montie T. C. 1985; Avirulence and altered physiological properties of cystic fibrosis strains of Pseudomonas aeruginosa. Infect Immun 50:572–576
    [Google Scholar]
  27. Mahenthiralingam E., Campbell M. E., Speert D. P. 1994; Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605
    [Google Scholar]
  28. Mandsberg L. F., Ciofu O., Kirkby N., Christiansen L. E., Poulsen H. E., Høiby N. 2009; Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 53:2483–2491
    [Google Scholar]
  29. Mathee K., Ciofu O., Sternberg C., Lindum P. W., Campbell J. I., Jensen P., Johnsen A. H., Givskov M., Ohman D. E. other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357
    [Google Scholar]
  30. Mena A., Macia M. D., Borrell N., Moya B., de Francisco T., Perez J. L., Oliver A. 2007; Inactivation of the mismatch repair system in Pseudomonas aeruginosa attenuates virulence but favors persistence of oropharyngeal colonization in cystic fibrosis mice. J Bacteriol 189:3665–3668
    [Google Scholar]
  31. Mena A., Smith E. E., Burns J. L., Speert D. P., Moskowitz S. M., Perez J. L., Oliver A. 2008; Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 190:7910–7917
    [Google Scholar]
  32. Michaels M. L., Cruz C., Grollman A. P., Miller J. H. 1992; Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci U S A 89:7022–7025
    [Google Scholar]
  33. Miller J. H. 1996; Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50:625–643
    [Google Scholar]
  34. Miller J. H., Suthar A., Tai J., Yeung A., Truong C., Stewart J. L. 1999; Direct selection for mutators in Escherichia coli. J Bacteriol 181:1576–1584
    [Google Scholar]
  35. Montanari S., Oliver A., Salerno P., Mena A., Bertoni G., Tümmler B., Cariani L., Conese M., Döring G., Bragonzi A. 2007; Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Microbiology 153:1445–1454
    [Google Scholar]
  36. Moyano A. J., Lujan A. M., Argarana C. E., Smania A. M. 2007; MutS deficiency and activity of the error-prone DNA polymerase IV are crucial for determining mucA as the main target for mucoid conversion in Pseudomonas aeruginosa. Mol Microbiol 64:547–559
    [Google Scholar]
  37. Ojeniyi B., Høiby N., Rosdahl V. T. 1991; Genome fingerprinting as a typing method used on polyagglutinable Pseudomonas aeruginosa isolates from cystic fibrosis patients. APMIS 99:492–498
    [Google Scholar]
  38. Ojeniyi B., Petersen U. S., Høiby N. 1993; Comparison of genome fingerprinting with conventional typing methods used on Pseudomonas aeruginosa isolates from cystic fibrosis patients. APMIS 101:168–175
    [Google Scholar]
  39. Oliver A., Canton R., Campo P., Baquero F., Blazquez J. 2000; High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254
    [Google Scholar]
  40. Oliver A., Baquero F., Blazquez J. 2002; The mismatch repair system ( mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650
    [Google Scholar]
  41. Oliver A., Levin B. R., Juan C., Baquero F., Blazquez J. 2004; Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48:4226–4233
    [Google Scholar]
  42. Pedersen S. S., Høiby N., Espersen F., Koch C. 1992; Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47:6–13
    [Google Scholar]
  43. Rodriguez-Rojas A., Blazquez J. 2009; The Pseudomonas aeruginosa pfpI gene plays an antimutator role and provides general stress protection. J Bacteriol 191:844–850
    [Google Scholar]
  44. Romling U., Tümmler B. 2000; Achieving 100 % typeability of Pseudomonas aeruginosa by pulsed-field gel electrophoresis. J Clin Microbiol 38:464–465
    [Google Scholar]
  45. Sandoz K. M., Mitzimberg S. M., Schuster M. 2007; Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 104:15876–15881
    [Google Scholar]
  46. Smania A. M., Segura I., Pezza R. J., Becerra C., Albesa I., Argarana C. E. 2004; Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa. Microbiology 150:1327–1338
    [Google Scholar]
  47. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. other authors 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492
    [Google Scholar]
  48. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  49. Waine D. J., Honeybourne D., Smith E. G., Whitehouse J. L., Dowson C. G. 2008; Association between hypermutator phenotype, clinical variables, mucoid phenotype, and antimicrobial resistance in Pseudomonas aeruginosa. J Clin Microbiol 46:3491–3493
    [Google Scholar]
  50. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86
    [Google Scholar]
  51. Wiegand I., Marr A. K., Breidenstein E. B., Schurek K. N., Taylor P., Hancock R. E. 2008; Mutator genes giving rise to decreased antibiotic susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3810–3813
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033993-0
Loading
/content/journal/micro/10.1099/mic.0.033993-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error