1887

Abstract

The outer membrane of Gram-negative bacteria is an essential compartment containing a specific complement of lipids and proteins that constitute a protective, selective permeability barrier. Outer membrane -barrel proteins are assembled into the membrane by the essential hetero-oligomeric BAM complex, which contains the lipoprotein BamE. We have identified a homologue of BamE, encoded by , which is located in the outer membrane of the stalked alpha-proteobacterium . BamE associates with proteins whose homologues in other bacteria are known to participate in outer membrane protein assembly: BamA (CC1915), BamB (CC1653) and BamD (CC1984). cells lacking BamE grow slowly in rich medium and are hypersensitive to anionic detergents, some antibiotics and heat exposure, which suggest that the membrane integrity of the mutant is compromised. Membranes of the Δ mutant have normal amounts of the outer membrane protein RsaF, a TolC homologue, but are deficient in CpaC*, an aggregated form of the outer membrane secretin for type IV pili. Δ membranes also contain greatly reduced amounts of three TonB-dependent receptors that are abundant in wild-type cells. Cells lacking BamE have short stalks and are delayed in stalk outgrowth during the cell cycle. Based on these findings, we propose that BamE participates in the assembly of outer membrane -barrel proteins, including one or more substrates required for the initiation of stalk biogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035055-0
2010-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/742.html?itemId=/content/journal/micro/10.1099/mic.0.035055-0&mimeType=html&fmt=ahah

References

  1. Alley M. R., Maddock J. R., Shapiro L. 1992; Polar localization of a bacterial chemoreceptor. Genes Dev 6:825–836
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Alvarez-Martinez C. E., Baldini R. L., Gomes S. L. 2006; A Caulobacter crescentus extracytoplasmic function sigma factor mediating the response to oxidative stress in stationary phase. J Bacteriol 188:1835–1846
    [Google Scholar]
  4. Alvarez-Martinez C. E., Lourenco R. F., Baldini R. L., Laub M. T., Gomes S. L. 2007; The ECF sigma factor σT is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol Microbiol 66:1240–1255
    [Google Scholar]
  5. Badger J. H., Hoover T. R., Brun Y. V., Weiner R. M., Laub M. T., Alexandre G., Mrázek J., Ren Q., Paulsen I. T. other authors 2006; Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus. J Bacteriol 188:6841–6850
    [Google Scholar]
  6. Bassford P. J. Jr, Kadner R. J. 1977; Genetic analysis of components involved in vitamin B12 uptake in Escherichia coli. J Bacteriol 132:796–805
    [Google Scholar]
  7. Bayan N., Guilvout I., Pugsley A. P. 2006; Secretins take shape. Mol Microbiol 60:1–4
    [Google Scholar]
  8. Biondi E. G., Skerker J. M., Arif M., Prasol M. S., Perchuk B. S., Laub M. T. 2006; A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. Mol Microbiol 59:386–401
    [Google Scholar]
  9. Blanvillain S., Meyer D., Boulanger A., Lautier M., Guynet C., Denance N., Vasse J., Lauber E., Arlat M. 2007; Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224
    [Google Scholar]
  10. Bouvier J., Pugsley A. P., Stragier P. 1991; A gene for a new lipoprotein in the dapA–purC interval of the Escherichia coli chromosome. J Bacteriol 173:5523–5531
    [Google Scholar]
  11. Braun V., Endriss F. 2007; Energy-coupled outer membrane transport proteins and regulatory proteins. Biometals 20:219–231
    [Google Scholar]
  12. Brun Y. V., Shapiro L. 1992; A temporally controlled sigma-factor is required for polar morphogenesis and normal cell division in Caulobacter. Genes Dev 6:2395–2408
    [Google Scholar]
  13. Charlson E. S., Werner J. N., Misra R. 2006; Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol 188:7186–7194
    [Google Scholar]
  14. Clancy M. J., Newton A. 1982; Localization of proteins in the inner and outer membranes of Caulobacter crescentus. Biochim Biophys Acta 686:160–169
    [Google Scholar]
  15. Collier J., Shapiro L. 2007; Spatial complexity and control of a bacterial cell cycle. Curr Opin Biotechnol 18:333–340
    [Google Scholar]
  16. Collin S., Guilvout I., Chami M., Pugsley A. P. 2007; YaeT-independent multimerization and outer membrane association of secretin PulD. Mol Microbiol 64:1350–1357
    [Google Scholar]
  17. Dartigalongue C., Missiakas D., Raina S. 2001; Characterization of the Escherichia coli sigma E regulon. J Biol Chem 276:20866–20875
    [Google Scholar]
  18. Delcour A. H. 2002; Structure and function of pore-forming β-barrels from bacteria. J Mol Microbiol Biotechnol 4:1–10
    [Google Scholar]
  19. DelVecchio V. G., Kapatral V., Elzer P., Patra G., Mujer C. V. 2002; The genome of Brucella melitensis. Vet Microbiol 90:587–592
    [Google Scholar]
  20. Doerrler W. T., Raetz C. R. 2005; Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J Biol Chem 280:27679–27687
    [Google Scholar]
  21. Elias J. E., Haas W., Faherty B. K., Gygi S. P. 2005; Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2:667–675
    [Google Scholar]
  22. Ely B. 1991; Genetics of Caulobacter crescentus. Methods Enzymol 204:372–384
    [Google Scholar]
  23. Eng J. K., McCormack A. L., Yates J. R. III 1994; An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989
    [Google Scholar]
  24. Evinger M., Agabian N. 1977; Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132:294–301
    [Google Scholar]
  25. Fardini Y., Trotereau J., Bottreau E., Souchard C., Velge P., Virlogeux-Payant I. 2009; Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella. Microbiology 155:1613–1622
    [Google Scholar]
  26. Fuangthong M., Sallabhan R., Atichartpongkul S., Rangkadilok N., Sriprang R., Satayavivad J., Mongkolsuk S. 2008; The omlA gene is involved in multidrug resistance and its expression is inhibited by coumarins in Xanthomonas campestris pv. phaseoli. Arch Microbiol 189:211–218
    [Google Scholar]
  27. Gatsos X., Perry A. J., Anwari K., Dolezal P., Wolynec P. P., Likic V. A., Purcell A. W., Buchanan S. K., Lithgow T. 2008; Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev 32:995–1009
    [Google Scholar]
  28. Gonin M., Quardokus E. M., O'Donnol D., Maddock J., Brun Y. V. 2000; Regulation of stalk elongation by phosphate in Caulobacter crescentus. J Bacteriol 182:337–347
    [Google Scholar]
  29. Grizot S., Buchanan S. K. 2004; Structure of the OmpA-like domain of RmpM from Neisseria meningitidis. Mol Microbiol 51:1027–1037
    [Google Scholar]
  30. Habib S. J., Waizenegger T., Niewienda A., Paschen S. A., Neupert W., Rapaport D. 2007; The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins. J Cell Biol 176:77–88
    [Google Scholar]
  31. House B. L., Mortimer M. W., Kahn M. L. 2004; New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 70:2806–2815
    [Google Scholar]
  32. Iba H., Fukuda A., Okada Y. 1977; Chromosome replication in Caulobacter crescentus growing in a nutrient broth. J Bacteriol 129:1192–1197
    [Google Scholar]
  33. Ireland M. M. E., Karty J. A., Quardokus E. M., Reilly J. P., Brun Y. V. 2002; Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol Microbiol 45:1029–1041
    [Google Scholar]
  34. Jansen C., Wiese A., Reubsaet L., Dekker N., de Cock H., Seydel U., Tommassen J. 2000 Biochemical and biophysical characterization of in vitro folded outer membrane porin PorA of Neisseria meningitidis Biochim Biophys Acta; 1464284–298
    [Google Scholar]
  35. Jimenez C. R., Huang L., Qiu Y., Burlingame A. L. 1998; In-gel digestion of proteins for MALDI-MS fingerprint mapping. In Current Protocols in Protein Science pp 16.14.11–16.14.15 Edited by Coligan J. E., Dunn B. M., Ploegh H. L., Speicher D. W., Wingfield P. T. New York: Wiley;
    [Google Scholar]
  36. Kabir M. S., Yamashita D., Koyama S., Oshima T., Kurokawa K., Maeda M., Tsunedomi R., Murata M., Wada C. other authors 2005; Cell lysis directed by σE in early stationary phase and effect of induction of the rpoE gene on global gene expression in Escherichia coli. Microbiology 151:2721–2735
    [Google Scholar]
  37. Kainth P., Gupta R. S. 2005; Signature proteins that are distinctive of alpha proteobacteria. BMC Genomics 6:94
    [Google Scholar]
  38. Knowles T. J., Jeeves M., Bobat S., Dancea F., McClelland D., Palmer T., Overduin M., Henderson I. R. 2008; Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol Microbiol 68:1216–1227
    [Google Scholar]
  39. Knowles T. J., Scott-Tucker A., Overduin M., Henderson I. R. 2009; Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7:206–214
    [Google Scholar]
  40. Koronakis V., Sharff A., Koronakis E., Luisi B., Hughes C. 2000; Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919
    [Google Scholar]
  41. Koronakis V., Eswaran J., Hughes C. 2004; Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489
    [Google Scholar]
  42. Lassmann T., Sonnhammer E. L. L. 2005; Kalign – an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6:298
    [Google Scholar]
  43. Lewenza S., Vidal-Ingigliardi D., Pugsley A. P. 2006; Direct visualization of red fluorescent lipoproteins indicates conservation of the membrane sorting rules in the family Enterobacteriaceae. J Bacteriol 188:3516–3524
    [Google Scholar]
  44. Lewis C., Skovierova H., Rowley G., Rezuchova B., Homerova D., Stevenson A., Sherry A., Kormanec J., Roberts M. 2008; Small outer-membrane protein lipoprotein, SmpA, is regulated by σE and has a role in cell envelope integrity and virulence of Salmonella enterica serovar Typhimurium. Microbiology 154:979–988
    [Google Scholar]
  45. Malinverni J. C., Werner J., Kim S., Sklar J. G., Kahne D., Misra R., Silhavy T. J. 2006; YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 61:151–164
    [Google Scholar]
  46. McLeod M., Craft S., Broach J. R. 1986; Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid  μ circle. Mol Cell Biol 6:3357–3367
    [Google Scholar]
  47. Molloy M. P., Phadke N. D., Maddock J. R., Andrews P. C. 2001; Two-dimensional electrophoresis and peptide mass fingerprinting of bacterial outer membrane proteins. Electrophoresis 22:1686–1696
    [Google Scholar]
  48. Narita S., Tokuda H. 2007; Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 282:13372–13378
    [Google Scholar]
  49. Narita S., Matsuyama S., Tokuda H. 2004; Lipoprotein trafficking in Escherichia coli. Arch Microbiol 182:1–6
    [Google Scholar]
  50. Neugebauer H., Herrmann C., Kammer W., Schwartz G., Nordheim A., Braun V. 2005; ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol 187:8300–8311
    [Google Scholar]
  51. Nierman W. C., Feldblyum T. V., Laub M. T., Paulsen I. T., Nelson K. E., Eisen J. A., Heidelberg J. F., Alley M. R., Ohta N. other authors 2001; Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A 98:4136–4141
    [Google Scholar]
  52. Nikaido H. 2003; Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656
    [Google Scholar]
  53. Ochsner U. A., Vasil A. I., Johnson Z., Vasil M. I. 1999; Pseudomonas aeruginosa fur overlaps with a gene encoding a novel outer membrane lipoprotein, OmlA. J Bacteriol 181:1099–1109
    [Google Scholar]
  54. Phadke N. D., Molloy M. P., Steinhoff S. A., Ulintz P. J., Andrews P. C., Maddock J. R. 2001; Analysis of the outer membrane proteome of Caulobacter crescentus by two-dimensional electrophoresis and mass spectrometry. Proteomics 1:705–720
    [Google Scholar]
  55. Poindexter J. S. 1964; Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295
    [Google Scholar]
  56. Poindexter J. L. S., Cohen-Bazire G. 1964; The fine structure of stalked bacteria belonging to the family Caulobacteraceae. J Cell Biol 23:587–607
    [Google Scholar]
  57. Postle K., Larsen R. A. 2007; TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 20:453–465
    [Google Scholar]
  58. Prinz T., Tommassen J. 2000; Association of iron-regulated outer membrane proteins of Neisseria meningitidis with RmpM (class 4) protein. FEMS Microbiol Lett 183:49–53
    [Google Scholar]
  59. Pugsley A. P., Reeves R. 1976; Iron uptake in colicin B-resistance mutants of Escherichia coli K-12. J Bacteriol 126:1052–1062
    [Google Scholar]
  60. Quon K. C., Marczynski G. T., Shapiro L. 1996; Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93
    [Google Scholar]
  61. Raleigh E. A., Elbing K., Brent R. 2002; Selected topics from classical bacterial genetics. In Current Protocols in Molecular Biology pp 1.4.1–1.4.14 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  62. Reisinger S. J., Huntwork S., Viollier P. H., Ryan K. R. 2007; DivL performs critical cell cycle functions in Caulobacter crescentus independent of kinase activity. J Bacteriol 189:8308–8320
    [Google Scholar]
  63. Rezuchova B., Miticka H., Homerova D., Roberts M., Kormanec J. 2003; New members of the Escherichia coli σE regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1–7
    [Google Scholar]
  64. Robert V., Volokhina E. B., Senf F., Bos M. P., Van Gelder P., Tommassen J. 2006; Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4:e377
    [Google Scholar]
  65. Rolhion N., Barnich N., Claret L., Darfeuille-Michaud A. 2005; Strong decrease in invasive ability and outer membrane vesicle release in Crohn's disease-associated invasive Escherichia coli strain Lf82 with the yfgL gene deleted. J Bacteriol 187:2286–2296
    [Google Scholar]
  66. Ruiz N., Silhavy T. J. 2005; Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8:122–126
    [Google Scholar]
  67. Ruiz N., Falcone B., Kahn D., Silhavy T. J. 2005; Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121:307–317
    [Google Scholar]
  68. Ruiz N., Wu T., Kahne D., Silhavy T. J. 2006; Probing the barrier function of the outer membrane with chemical conditionality. ACS Chem Biol 1:385–395
    [Google Scholar]
  69. Sankaran K., Gupta S. D., Wu H. C. 1995; Modification of bacterial lipoproteins. Methods Enzymol 250:683–697
    [Google Scholar]
  70. Schmidt J. M., Stanier R. Y. 1966; The development of cellular stalks in bacteria. J Cell Biol 28:423–436
    [Google Scholar]
  71. Sciochetti S. A., Lane T., Ohta N., Newton A. 2002; Protein sequences and cellular factors required for polar localization of a histidine kinase in Caulobacter crescentus. J Bacteriol 184:6037–6049
    [Google Scholar]
  72. Seitz L. C., Brun Y. V. 1998; Genetic analysis of mecillinam-resistant mutants of Caulobacter crescentus deficient in stalk biosynthesis. J Bacteriol 180:5235–5239
    [Google Scholar]
  73. Seydel A., Gounon P., Pugsley A. P. 1999; Testing the ‘+2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34:810–821
    [Google Scholar]
  74. Skerker J. M., Shapiro L. 2000; Identification and cell-cycle control of a novel pilus system in Caulobacter crescentus. EMBO J 19:3223–3234
    [Google Scholar]
  75. Skerker J. M., Prasol M. S., Perchuk B. S., Biondi E. G., Laub M. T. 2005; Two-component signal transduction pathways regulating growth and cell cycle progresion in a bacterium: A systems-level analysis. PLoS Biol 3:e334
    [Google Scholar]
  76. Sklar J. G., Wu T., Gronenberg L. S., Malinverni J. C., Kahne D., Silhavy T. J. 2007; Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 104:6400–6405
    [Google Scholar]
  77. Stove J. L., Stanier R. Y. 1962; Cellular differentiation in stalked bacteria. Nature 196:1189–1192
    [Google Scholar]
  78. Tabb D. L., McDonald W. H., Yates J. R. 2002; DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1:21–26
    [Google Scholar]
  79. Toporowski M. C., Nomellini J. F., Awram P., Smit J. 2004; Two outer membrane proteins are required for maximal type I secretion of the Caulobacter crescentus S-layer protein. J Bacteriol 186:8000–8009
    [Google Scholar]
  80. Vanini M. M. T., Spisini A., Sforca M. L., Pertinhez T. A., Benedetti C. E. 2008; The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. cirtri reveals a protein fold implicated in protein–protein interaction. Proteins 71:2051–2064
    [Google Scholar]
  81. Viollier P. H., Sternheim N., Shapiro L. 2002; A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins. EMBO J 21:4420–4428
    [Google Scholar]
  82. Vogel J., Papenfort K. 2006; Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 9:605–611
    [Google Scholar]
  83. Volokhina E. B., Beckers F., Tomassen J., Bos M. P. 2009; The β-barrel outer membrane protein assembly complex of Neisseria meningitidis. J Bacteriol 191:7074–7085
    [Google Scholar]
  84. Voulhoux R., Bos M. P., Geurtsen J., Mols M., Tommassen J. 2003; Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265
    [Google Scholar]
  85. Vuong P., Bennion D., Mantei J., Frost D., Misra R. 2008; Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J Bacteriol 190:1507–1517
    [Google Scholar]
  86. Wagner J. K., Galvani C. D., Brun Y. V. 2005; Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation. J Bacteriol 187:544–553
    [Google Scholar]
  87. Wagner J. K., Setayeshgar S., Sharon L. A., Reilly J. P., Brun Y. V. 2006; A nutrient uptake role for bacterial envelope extensions. Proc Natl Acad Sci U S A 103:11772–11777
    [Google Scholar]
  88. Werner J., Misra R. 2005; YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent proteins of Escherichia coli. Mol Microbiol 57:1450–1459
    [Google Scholar]
  89. Wheeler R. T., Shapiro L. 1999; Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 4:683–694
    [Google Scholar]
  90. Wu T., Malinverni J., Ruiz N., Kim S., Silhavy T. J., Kahne D. 2005; Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–245
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035055-0
Loading
/content/journal/micro/10.1099/mic.0.035055-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error