1887

Abstract

A number of single-nucleotide polymorphisms (SNPs) have been identified in the genome of BCG Pasteur compared with the sequenced strain 2122/97. The functional consequences of many of these mutations remain to be described; however, mutations in genes encoding regulators may be particularly relevant to global phenotypic changes such as loss of virulence, since alteration of a regulator's function will affect the expression of a wide range of genes. One such SNP falls in , encoding a member of the AfsR/DnrI/SARP class of global transcriptional regulators, that replaces a highly conserved glutamic acid residue at position 159 (E159G) with glycine in a tetratricopeptide repeat (TPR) located in the bacterial transcriptional activation (BTA) domain of BCG3145. TPR domains are associated with protein–protein interactions, and a conserved core (helices T1–T7) of the BTA domain seems to be required for proper function of SARP-family proteins. Structural modelling predicted that the E159G mutation perturbs the third -helix of the BTA domain and could therefore have functional consequences. The E159G SNP was found to be present in all BCG strains, but absent from virulent and strains. By overexpressing BCG3145 and Rv3124 in BCG and H37Rv and monitoring transcriptome changes using microarrays, we determined that BCG3145/Rv3124 acts as a positive transcriptional regulator of the molybdopterin biosynthesis locus, and we suggest that be renamed . The SNP in was found to have a subtle effect on the activity of MoaR1, suggesting that this mutation is not a key event in the attenuation of BCG.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037200-0
2010-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2112.html?itemId=/content/journal/micro/10.1099/mic.0.037200-0&mimeType=html&fmt=ahah

References

  1. Alderwick L. J., Molle V., Kremer L., Cozzone A. J., Dafforn T. R., Besra G. S., Futterer K. 2006; Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103:2558–2563
    [Google Scholar]
  2. Baker K. P., Boxer D. H. 1991; Regulation of the chlA locus of Escherichia coli K12: involvement of molybdenum cofactor. Mol Microbiol 5:901–907
    [Google Scholar]
  3. Bardarov S., Bardarov S. Jr, Pavelka M. S. Jr, Sambandamurthy V., Larsen M., Tufariello J., Chan J., Hatfull G., Jacobs W. R. Jr 2002; Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M.bovis BCG and M. smegmatis. Microbiology 148:3007–3017
    [Google Scholar]
  4. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523
    [Google Scholar]
  5. Behr M. A., Schroeder B. G., Brinkman J. N., Slayden R. A., Barry C. E. III 2000; A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927. J Bacteriol 182:3394–3399
    [Google Scholar]
  6. Belanger A. E., Besra G. S., Ford M. E., Mikusova K., Belisle J. T., Brennan P. J., Inamine J. M. 1996; The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A 93:11919–11924
    [Google Scholar]
  7. Belley A., Alexander D., Di Pietrantonio T., Girard M., Jones J., Schurr E., Liu J., Sherman D. R., Behr M. A. 2004; Impact of methoxymycolic acid production by Mycobacterium bovis BCG vaccines. Infect Immun 72:2803–2809
    [Google Scholar]
  8. Brosch R., Gordon S. V., Garnier T., Eiglmeier K., Frigui W., Valenti P., Dos Santos S., Duthoy S., Lacroix C. other authors 2007; Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A 104:5596–5601
    [Google Scholar]
  9. Bryson K., McGuffin L. J., Marsden R. L., Ward J. J., Sodhi J. S., Jones D. T. 2005; Protein structure prediction servers at University College London. Nucleic Acids Res 33:W36–W38
    [Google Scholar]
  10. Calmette A. 1927 La Vaccination Preventive Contre la Tuberculose Paris: Masson et cie;
  11. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  12. D'Andrea L. D., Regan L. 2003; TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662
    [Google Scholar]
  13. Dussurget O., Timm J., Gomez M., Gold B., Yu S., Sabol S. Z., Holmes R. K., Jacobs W. R. Jr, Smith I. 1999; Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 181:3402–3408
    [Google Scholar]
  14. Garcia Pelayo M. C., Uplekar S., Keniry A., Mendoza Lopez P., Garnier T., Nunez Garcia J., Boschiroli L., Zhou X., Parkhill J. other authors 2009; A comprehensive survey of single nucleotide polymorphisms (SNPs) across Mycobacterium bovis strains and M. bovis BCG vaccine strains refines the genealogy and defines a minimal set of SNPs that separate virulent M. bovis strains and M. bovis BCG strains. Infect Immun 77:2230–2238
    [Google Scholar]
  15. Golby P., Hatch K. A., Bacon J., Cooney R., Riley P., Allnutt J., Hinds J., Nunez J., Marsh P. D. other authors 2007; Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex. Microbiology 153:3323–3336
    [Google Scholar]
  16. Golby P., Nunez J., Cockle P. J., Ewer K., Logan K., Hogarth P., Vordermeier H. M., Hinds J., Hewinson R. G., Gordon S. V. 2008; Characterization of two in vivo-expressed methyltransferases of the Mycobacterium tuberculosis complex: antigenicity and genetic regulation. Microbiology 154:1059–1067
    [Google Scholar]
  17. Gordon S. V., Brosch R., Billault A., Garnier T., Eiglmeier K., Cole S. T. 1999; Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655
    [Google Scholar]
  18. Hunt D. M., Saldanha J. W., Brennan J. F., Benjamin P., Strom M., Cole J. A., Spreadbury C. L., Buxton R. S. 2008; Single nucleotide polymorphisms that cause structural changes in the cyclic AMP receptor protein transcriptional regulator of the tuberculosis vaccine strain Mycobacterium bovis BCG alter global gene expression without attenuating growth. Infect Immun 76:2227–2234
    [Google Scholar]
  19. Jones D. T. 1999; Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202
    [Google Scholar]
  20. Keating L. A., Wheeler P. R., Mansoor H., Inwald J. K., Dale J., Hewinson R. G., Gordon S. V. 2005; The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56:163–174
    [Google Scholar]
  21. Kiefer F., Arnold K., Kunzli M., Bordoli L., Schwede T. 2009; The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–D392
    [Google Scholar]
  22. Lewis K. N., Liao R., Guinn K. M., Hickey M. J., Smith S., Behr M. A., Sherman D. R. 2003; Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette–Guérin attenuation. J Infect Dis 187:117–123
    [Google Scholar]
  23. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282
    [Google Scholar]
  24. Martinez-Hackert E., Stock A. M. 1997a; The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5:109–124
    [Google Scholar]
  25. Martinez-Hackert E., Stock A. M. 1997b; Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 269:301–312
    [Google Scholar]
  26. Miller J. M. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Mostowy S., Tsolaki A. G., Small P. M., Behr M. A. 2003; The in vitro evolution of BCG vaccines. Vaccine 21:4270–4274
    [Google Scholar]
  28. Muttucumaru D. G., Roberts G., Hinds J., Stabler R. A., Parish T. 2004; Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. Tuberculosis (Edinb ) 84:239–246
    [Google Scholar]
  29. Parish T., Brown A. 2008 Mycobacterium: Genomics and Molecular Biology Norwich: Caister Academic Press;
  30. Pym A. S., Brodin P., Brosch R., Huerre M., Cole S. T. 2002; Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717
    [Google Scholar]
  31. Rachman H., Strong M., Ulrichs T., Grode L., Schuchhardt J., Mollenkopf H., Kosmiadi G. A., Eisenberg D., Kaufmann S. H. 2006; Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74:1233–1242
    [Google Scholar]
  32. Sala C., Forti F., Magnoni F., Ghisotti D. 2008; The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5′ end and is stabilized by both a polypurine sequence and translation initiation. BMC Mol Biol 9:33
    [Google Scholar]
  33. Sassetti C. M., Rubin E. J. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100:12989–12994
    [Google Scholar]
  34. Schwarz G., Mendel R. R., Ribbe M. W. 2009; Molybdenum cofactors, enzymes and pathways. Nature 460:839–847
    [Google Scholar]
  35. Self W. T., Grunden A. M., Hasona A., Shanmugam K. T. 1999; Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: ModE–molybdate, a repressor of the modABCD (molybdate transport) operon is a secondary transcriptional activator for the hyc and nar operons. Microbiology 145:41–55
    [Google Scholar]
  36. Sheldon P. J., Busarow S. B., Hutchinson C. R. 2002; Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460
    [Google Scholar]
  37. Tanaka A., Takano Y., Ohnishi Y., Horinouchi S. 2007; AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol 369:322–333
    [Google Scholar]
  38. Wayne L. G., Hayes L. G. 1996; An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069
    [Google Scholar]
  39. Wooff E., Michell S. L., Gordon S. V., Chambers M. A., Bardarov S., Jacobs W. R. Jr, Hewinson R. G., Wheeler P. R. 2002; Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo. Mol Microbiol 43:653–663
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037200-0
Loading
/content/journal/micro/10.1099/mic.0.037200-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error