1887

Abstract

serine/threonine protein kinases (STPKs) are key regulators of growth and metabolism; however, evidence for their roles in virulence is limited. In a preliminary screen based on comparative expression between strains H37Rv and H37Ra, six STPK genes, , , , , and , showed higher expression in H37Rv. In the second screen, STPK expression was analysed in H37Rv-infected human macrophages. Interestingly, significant expression of was detected only at 18 h post-infection, suggesting its involvement in early infection events. We have investigated the roles of PknK and . PknK levels were induced under stationary phase and deletion of resulted in increased resistance of the mutant to acidic pH, hypoxia, oxidative and stationary-phase stresses . These results, together with the increased survival of the Δ strain during persistent infection in mice, reveal a role for PknK in adaptive mechanisms that slow the growth of mycobacteria. A novel finding of this study was the inhibition of growth of Δ strain during acute infection in mice that correlated with the significant upregulation of tumour necrosis factor as well as the simultaneous downregulation of interleukin-12p40, interferon- and induced nitric oxide synthase transcripts. Finally, we provide evidence for the localization of PknK during infection and discuss its implications in pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040675-0
2010-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2829.html?itemId=/content/journal/micro/10.1099/mic.0.040675-0&mimeType=html&fmt=ahah

References

  1. Av-Gay Y., Everett M. 2000; The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8:238–244
    [Google Scholar]
  2. Av-Gay Y., Jamil S., Drews S. J. 1999; Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect Immun 67:5676–5682
    [Google Scholar]
  3. Bach H., Wong D., Av-Gay Y. 2009; Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J 420:155–160
    [Google Scholar]
  4. Bardarov S., Bardarov S. Jr, Pavelka M. S. Jr, Sambandamurthy V., Larsen M., Tufariello J., Chan J., Hatfull G., Jacobs W. R. Jr 2002; Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M.bovis BCG and M. smegmatis. Microbiology 148:3007–3017
    [Google Scholar]
  5. Beltan E., Horgen L., Rastogi N. 2000; Secretion of cytokines by human macrophages upon infection by pathogenic and non-pathogenic mycobacteria. Microb Pathog 28:313–318
    [Google Scholar]
  6. Beste D. J., Laing E., Bonde B., Avignone-Rossa C., Bushell M. E., McFadden J. J. 2007; Transcriptomic analysis identifies growth rate modulation as a component of the adaptation of mycobacteria to survival inside the macrophage. J Bacteriol 189:3969–3976
    [Google Scholar]
  7. Beste D. J., Espasa M., Bonde B., Kierzek A. M., Stewart G. R., McFadden J. 2009; The genetic requirements for fast and slow growth in mycobacteria. PLoS One 4:e5349
    [Google Scholar]
  8. Chaba R., Raje M., Chakraborti P. K. 2002; Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur J Biochem 269:1078–1085
    [Google Scholar]
  9. Chao J., Wong D., Zheng X., Poirier V., Bach H., Hmama Z., Av-Gay Y. 2009; Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochim Biophys Acta 1804620–627
    [Google Scholar]
  10. Cohen-Gonsaud M., Barthe P., Canova M. J., Stagier-Simon C., Kremer L., Roumestand C., Molle V. 2009; The Mycobacterium tuberculosis Ser/Thr kinase substrate Rv2175c is a DNA-binding protein regulated by phosphorylation. J Biol Chem 284:19290–19300
    [Google Scholar]
  11. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  12. Cooper A. M., Magram J., Ferrante J., Orme I. M. 1997; Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J Exp Med 186:39–45
    [Google Scholar]
  13. Cowley S., Ko M., Pick N., Chow R., Downing K. J., Gordhan B. G., Betts J. C., Mizrahi V., Smith D. A. other authors 2004; The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 52:1691–1702
    [Google Scholar]
  14. Cozzone A. J. 2005; Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J Mol Microbiol Biotechnol 9:198–213
    [Google Scholar]
  15. Cui T., Zhang L., Wang X., He Z. G. 2009; Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics 10:118
    [Google Scholar]
  16. Dasgupta N., Kapur V., Singh K. K., Das T. K., Sachdeva S., Jyothisri K., Tyagi J. S. 2000; Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tuber Lung Dis 80:141–159
    [Google Scholar]
  17. Dasgupta A., Datta P., Kundu M., Basu J. 2006; The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152:493–504
    [Google Scholar]
  18. Deol P., Vohra R., Saini A. K., Singh A., Chandra H., Chopra P., Das T. K., Tyagi A. K., Singh Y. 2005; Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J Bacteriol 187:3415–3420
    [Google Scholar]
  19. Falcone V., Bassey E. B., Toniolo A., Conaldi P. G., Collins F. M. 1994; Differential release of tumor necrosis factor-alpha from murine peritoneal macrophages stimulated with virulent and avirulent species of mycobacteria. FEMS Immunol Med Microbiol 8:225–232
    [Google Scholar]
  20. Flynn J. L., Chan J., Triebold K. J., Dalton D. K., Stewart T. A., Bloom B. R. 1993; An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254
    [Google Scholar]
  21. Gonzales A. M., Orlando R. A. 2008; Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes. Nutr Metab (Lond 5:17
    [Google Scholar]
  22. Gopalaswamy R., Narayanan S., Jacobs W. R. Jr, Av-Gay Y. 2008; Mycobacterium smegmatis biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiol Lett 278:121–127
    [Google Scholar]
  23. Gopalaswamy R., Narayanan S., Chen B., Jacobs W. R., Av-Gay Y. 2009; The serine/threonine protein kinase PknI controls the growth of Mycobacterium tuberculosis upon infection. FEMS Microbiol Lett 295:23–29
    [Google Scholar]
  24. Graham J. E., Clark-Curtiss J. E. 1999; Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS. Proc Natl Acad Sci U S A 96:11554–11559
    [Google Scholar]
  25. Greenstein A. E., Grundner C., Echols N., Gay L. M., Lombana T. N., Miecskowski C. A., Pullen K. E., Sung P. Y., Alber T. 2005; Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. J Mol Microbiol Biotechnol 9:167–181
    [Google Scholar]
  26. Greenstein A. E., MacGurn J. A., Baer C. E., Falick A. M., Cox J. S., Alber T. 2007; M. tuberculosis Ser/Thr protein kinase D phosphorylates an anti-anti-sigma factor homolog. PLoS Pathog 3:e49
    [Google Scholar]
  27. Haydel S. E., Clark-Curtiss J. E. 2004; Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol Lett 236:341–347
    [Google Scholar]
  28. Hou J. Y., Graham J. E., Clark-Curtiss J. E. 2002; Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS. Infect Immun 70:3714–3726
    [Google Scholar]
  29. Jang J., Stella A., Boudou F., Levillain F., Darthuy E., Vaubourgeix J., Wang C., Bardou F., Puzo G. other authors 2010; Functional characterization of the Mycobacterium tuberculosis serine/threonine kinase Pkn. Microbiology 156:1619–1631
    [Google Scholar]
  30. Kang C. M., Abbott D. W., Park S. T., Dascher C. C., Cantley L. C., Husson R. N. 2005; The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704
    [Google Scholar]
  31. Kang C. M., Nyayapathy S., Lee J. Y., Suh J. W., Husson R. N. 2008; Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154:725–735
    [Google Scholar]
  32. Kelly B. P., Furney S. K., Jessen M. T., Orme I. M. 1996; Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother 40:2809–2812
    [Google Scholar]
  33. Korf J., Stoltz A., Verschoor J., De Baetselier P., Grooten J. 2005; The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol 35:890–900
    [Google Scholar]
  34. Kumar P., Kumar D., Parikh A., Rananaware D., Gupta M., Singh Y., Nandicoori V. K. 2009; The Mycobacterium tuberculosis protein kinase K modulates activation of transcription from the promoter of mycobacterial monooxygenase operon through phosphorylation of the transcriptional regulator VirS. J Biol Chem 284:11090–11099
    [Google Scholar]
  35. MacMicking J. D., North R. J., LaCourse R., Mudgett J. S., Shah S. K., Nathan C. F. 1997; Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94:5243–5248
    [Google Scholar]
  36. Magram J., Sfarra J., Connaughton S., Faherty D., Warrier R., Carvajal D., Wu C. Y., Stewart C., Sarmiento U., Gately M. K. 1996; IL-12-deficient mice are defective but not devoid of type 1 cytokine responses. Ann N Y Acad Sci 795:60–70
    [Google Scholar]
  37. Malhotra V., Tyagi J. S., Clark-Curtiss J. E. 2009; DevR-mediated adaptive response in Mycobacterium tuberculosis H37Ra: links to asparagine metabolism. Tuberculosis (Edinb 89:169–174
    [Google Scholar]
  38. Molle V., Brown A. K., Besra G. S., Cozzone A. J., Kremer L. 2006; The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J Biol Chem 281:30094–30103
    [Google Scholar]
  39. Narayan A., Sachdeva P., Sharma K., Saini A. K., Tyagi A. K., Singh Y. 2007; Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiol Genomics 29:66–75
    [Google Scholar]
  40. O'Hare H. M., Durán R., Cerveñansky C., Bellinzoni M., Wehenkel A. M., Pritsch O., Obal G., Baumgartner J., Vialaret J. other authors 2008; Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70:1408–1423
    [Google Scholar]
  41. Overbergh L., Valckx D., Waer M., Mathieu C. 1999; Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine 11:305–312
    [Google Scholar]
  42. Papavinasasundaram K. G., Chan B., Chung J. H., Colston M. J., Davis E. O., Av-Gay Y. 2005; Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J Bacteriol 187:5751–5760
    [Google Scholar]
  43. Park S. T., Kang C. M., Husson R. N. 2008; Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105:13105–13110
    [Google Scholar]
  44. Saini D. K., Malhotra V., Dey D., Pant N., Das T. K., Tyagi J. S. 2004; DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology 150:865–875
    [Google Scholar]
  45. Scherr N., Muller P., Perisa D., Combaluzier B., Jeno P., Pieters J. 2009; Survival of pathogenic mycobacteria in macrophages is mediated through autophosphorylation of protein kinase G. J Bacteriol 191:4546–4554
    [Google Scholar]
  46. Sharma D., Tyagi J. S. 2007; The value of comparative genomics in understanding mycobacterial virulence: Mycobacterium tuberculosis H37Ra genome sequencing – a worthwhile endeavour. J Biosci 32:185–189
    [Google Scholar]
  47. Sharma K., Gupta M., Krupa A., Srinivasan N., Singh Y. 2006; EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/threonine kinases and phosphatase in Mycobacterium tuberculosis. FEBS J 273:2711–2721
    [Google Scholar]
  48. Shi L., Jung Y. J., Tyagi S., Gennaro M. L., North R. J. 2003; Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci U S A 100:241–246
    [Google Scholar]
  49. Singh A., Jain S., Gupta S., Das T., Tyagi A. K. 2003; mymA operon of Mycobacterium tuberculosis: its regulation and importance in the cell envelope. FEMS Microbiol Lett 227:53–63
    [Google Scholar]
  50. Singh A., Gupta R., Vishwakarma R. A., Narayanan P. R., Paramasivan C. N., Ramanathan V. D., Tyagi A. K. 2005; Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs. J Bacteriol 187:4173–4186
    [Google Scholar]
  51. Singh A., Singh Y., Pine R., Shi L., Chandra R., Drlica K. 2006; Protein kinase I of Mycobacterium tuberculosis: cellular localization and expression during infection of macrophage-like cells. Tuberculosis (Edinb 86:28–33
    [Google Scholar]
  52. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H. other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460
    [Google Scholar]
  53. Talaat A. M., Ward S. K., Wu C. W., Rondon E., Tavano C., Bannantine J. P., Lyons R., Johnston S. A. 2007; Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. J Bacteriol 189:4265–4274
    [Google Scholar]
  54. Thakur M., Chakraborti P. K. 2006; GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase. PknA. J Biol Chem 281:40107–40113
    [Google Scholar]
  55. Thakur M., Chakraborti P. K. 2008; Ability of PknA, a mycobacterial eukaryotic-type serine/threonine kinase, to transphosphorylate MurD, a ligase involved in the process of peptidoglycan biosynthesis. Biochem J 415:27–33
    [Google Scholar]
  56. Tiwari D., Singh R. K., Goswami K., Verma S. K., Prakash B., Nandicoori V. K. 2009; Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J Biol Chem 284:27467–27479
    [Google Scholar]
  57. Veyron-Churlet R., Molle V., Taylor R. C., Brown A. K., Besra G. S., Zanella-Cleon I., Futterer K., Kremer L. 2009; The Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. J Biol Chem 284:6414–6424
    [Google Scholar]
  58. Walburger A., Koul A., Ferrari G., Nguyen L., Prescianotto-Baschong C., Huygen K., Klebl B., Thompson C., Bacher G., Pieters J. 2004; Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304:1800–1804
    [Google Scholar]
  59. Zhang W., Munoz-Dorado J., Inouye M., Inouye S. 1992; Identification of a putative eukaryotic-like protein kinase family in the developmental bacterium Myxococcus xanthus. J Bacteriol 174:5450–5453
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040675-0
Loading
/content/journal/micro/10.1099/mic.0.040675-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error