1887

Abstract

lacks the enzyme phosphofructokinase and, consequently, is incapable of metabolizing glucose. Instead, the pathogen uses a number of other chemicals to serve as electron donors. Like chemolithotrophic bacteria, is able to respire sulphite in the presence of a sulphite : cytochrome oxidoreductase (SOR) that is encoded by the genes and ; the former encodes a monohaem cytochrome oxidoreductase and the latter a molybdopterin oxidoreductase. After screening of a transposon-based mutant library, we identified a mutant with an insertion in gene that was strongly reduced in its capacity to infect Caco2 cells. Further characterization of a corresponding non-random knockout mutant together with a complemented mutant and the parental strain showed the -deficient mutant to exhibit clearly reduced motility and diminished adherence to host cells. Furthermore, the transcription of genes responsible for the synthesis of, in particular, legionaminic acid was downregulated and the mutant had a reduced capacity to autoagglutinate. In contrast, neither the proliferation of the mutant, nor its intracellular ATP content, was altered compared to the parental strain.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award 906/13-1)
  • German Academic Exchange Service (DAAD)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045567-0
2011-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1776.html?itemId=/content/journal/micro/10.1099/mic.0.045567-0&mimeType=html&fmt=ahah

References

  1. Allos B. M. ( 2001). Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32:1201–1206 [View Article][PubMed]
    [Google Scholar]
  2. Altekruse S. F., Stern N. J., Fields P. I., Swerdlow D. L. ( 1999). Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis 5:28–35 [View Article][PubMed]
    [Google Scholar]
  3. Barnes E. M., Mead G. C., Barnum D. A., Harry E. G. ( 1972). The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. Br Poult Sci 13:311–326 [View Article][PubMed]
    [Google Scholar]
  4. Black R. E., Levine M. M., Clements M. L., Hughes T. P., Blaser M. J. ( 1988). Experimental Campylobacter jejuni infection in humans. J Infect Dis 157:472–479 [View Article][PubMed]
    [Google Scholar]
  5. Colegio O. R., Griffin T. J. IV, Grindley N. D. F., Galán J. E. ( 2001). In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni . J Bacteriol 183:2384–2388 [View Article][PubMed]
    [Google Scholar]
  6. Dasti J. I., Gross U., Pohl S., Lugert R., Weig M., Schmidt-Ott R. ( 2007). Role of the plasmid-encoded tet(O) gene in tetracycline-resistant clinical isolates of Campylobacter jejuni and Campylobacter coli . J Med Microbiol 56:833–837 [View Article][PubMed]
    [Google Scholar]
  7. Everest P. H., Goossens H., Butzler J. P., Lloyd D., Knutton S., Ketley J. M., Williams P. H. ( 1992). Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli . J Med Microbiol 37:319–325 [View Article][PubMed]
    [Google Scholar]
  8. Flanagan R. C., Neal-McKinney J. M., Dhillon A. S., Miller W. G., Konkel M. E. ( 2009). Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization. Infect Immun 77:2399–2407 [View Article][PubMed]
    [Google Scholar]
  9. Friedman C. R., Neiman J., Wegener H. C., Tauxe R. V. ( 2000). Epidemiology of Campylobacter jejuni in the United States and other industrialized nations. Campylobacter, 2nd edn.121–138 Nachamkin I., Blaser M. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Guerry P., Alm R. A., Power M. E., Logan S. M., Trust T. J. ( 1991). Role of two flagellin genes in Campylobacter motility. J Bacteriol 173:4757–4764[PubMed]
    [Google Scholar]
  11. Hendrixson D. R. ( 2008). Regulation of flagellar gene expression and regulation. Campylobacter, 3rd edn.545–558 Nachamkin I., Szymanski C. M., Blaser M. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Hendrixson D. R., DiRita V. J. ( 2003). Transcription of σ54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50:687–702 [View Article][PubMed]
    [Google Scholar]
  13. Hendrixson D. R., Akerley B. J., DiRita V. J. ( 2001). Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40:214–224 [View Article][PubMed]
    [Google Scholar]
  14. Hoffman P. S., Goodman T. G. ( 1982). Respiratory physiology and energy conservation efficiency of Campylobacter jejuni . J Bacteriol 150:319–326[PubMed]
    [Google Scholar]
  15. Howard S. L., Jagannathan A., Soo E. C., Hui J. P. M., Aubry A. J., Ahmed I., Karlyshev A., Kelly J. F., Jones M. A. et al. ( 2009). Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect Immun 77:2544–2556 [View Article][PubMed]
    [Google Scholar]
  16. Jin S., Joe A., Lynett J., Hani E. K., Sherman P., Chan V. L. ( 2001). JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39:1225–1236 [View Article][PubMed]
    [Google Scholar]
  17. Kappler U., Dahl C. ( 2001). Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203:1–9[PubMed] [CrossRef]
    [Google Scholar]
  18. Kappler U., Bennett B., Rethmeier J., Schwarz G., Deutzmann R., McEwan A. G., Dahl C. ( 2000). Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275:13202–13212 [View Article][PubMed]
    [Google Scholar]
  19. Karlyshev A. V., Wren B. W. ( 2005). Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni . Appl Environ Microbiol 71:4004–4013 [View Article][PubMed]
    [Google Scholar]
  20. Kelly D. J. ( 2001). The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori . J Appl Microbiol 175:102–111
    [Google Scholar]
  21. Konkel M. E., Garvis S. G., Tipton S. L., Anderson D. E. Jr, Cieplak W. Jr ( 1997). Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni . Mol Microbiol 24:953–963 [View Article][PubMed]
    [Google Scholar]
  22. Konkel M. E., Kim B. J., Klena J. D., Young C. R., Ziprin R. ( 1998). Characterization of the thermal stress response of Campylobacter jejuni. . Infect Immun 66:3666–3672
    [Google Scholar]
  23. Konkel M. E., Klena J. D., Rivera-Amill V., Monteville M. R., Biswas D., Raphael B., Mickelson J. ( 2004). Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186:3296–3303 [View Article][PubMed]
    [Google Scholar]
  24. Konkel M. E., Larson C. L., Flanagan R. C. ( 2010). Campylobacter jejuni FlpA binds fibronectin and is required for maximal host cell adherence. J Bacteriol 192:68–76 [View Article][PubMed]
    [Google Scholar]
  25. Lee M. D., Newell D. G. ( 2006). Campylobacter in poultry: filling an ecological niche. Avian Dis 50:1–9 [View Article][PubMed]
    [Google Scholar]
  26. Logan S. M., Schoenhofen I. C., Guerry P. ( 2008). O-linked flagellar glycosylation in Campylobacter . Campylobacter, 3rd edn.471–481 Nachamkin I., Scymanski C. M., Blaser M. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Lu J., Idris U., Harmon B., Hofacre C., Maurer J. J., Lee M. D. ( 2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69:6816–6824 [View Article][PubMed]
    [Google Scholar]
  28. Marchant J., Wren B., Ketley J. ( 2002). Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis . Trends Microbiol 10:155–159 [View Article][PubMed]
    [Google Scholar]
  29. McNally D. J., Aubry A. J., Hui J. P., Khieu N. H., Whitfield D., Ewing C. P., Guerry P., Brisson J. R., Logan S. M., Soo E. C. ( 2007). Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. J Biol Chem 282:14463–14475 [View Article][PubMed]
    [Google Scholar]
  30. Mead P. S., Slutsker L., Dietz V., McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V. ( 1999). Food-related illness and death in the United States. Emerg Infect Dis 5:607–625 [View Article][PubMed]
    [Google Scholar]
  31. Misawa N., Blaser M. J. ( 2000). Detection and characterization of autoagglutination activity by Campylobacter jejuni . Infect Immun 68:6168–6175 [View Article][PubMed]
    [Google Scholar]
  32. Mitsuhashi H., Nojima Y., Tanaka T., Ueki K., Maezawa A., Yano S., Naruse T. ( 1998). Sulfite is released by human neutrophils in response to stimulation with lipopolysaccharide. J Leukoc Biol 64:595–599[PubMed]
    [Google Scholar]
  33. Morooka T., Umeda A., Amako K. ( 1985). Motility as an intestinal colonization factor for Campylobacter jejuni. . J Gen Microbiol 131:1973–1980[PubMed]
    [Google Scholar]
  34. Myers J. D., Kelly D. J. ( 2005). A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni . Microbiology 151:233–242 [View Article][PubMed]
    [Google Scholar]
  35. Nachamkin I., Yang X. H., Stern N. J. ( 1993). Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol 59:1269–1273[PubMed]
    [Google Scholar]
  36. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. et al. ( 2000). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668 [View Article][PubMed]
    [Google Scholar]
  37. Pavlovskis O. R., Rollins D. M., Haberberger R. L. Jr, Green A. E., Habash L., Strocko S., Walker R. I. ( 1991). Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infect Immun 59:2259–2264[PubMed]
    [Google Scholar]
  38. Pei Z. M., Blaser M. J. ( 1993). PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in Gram-negative nutrient transport systems. J Biol Chem 268:18717–18725[PubMed]
    [Google Scholar]
  39. Pickett C. L., Whitehouse C. A. ( 1999). The cytolethal distending toxin family. Trends Microbiol 7:292–297 [View Article][PubMed]
    [Google Scholar]
  40. Rivera-Amill V., Kim B. J., Seshu J., Konkel M. E. ( 2001). Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J Infect Dis 183:1607–1616 [View Article][PubMed]
    [Google Scholar]
  41. Schmidt-Ott R., Pohl S., Burghard S., Weig M., Gross U. ( 2005). Identification and characterization of a major subgroup of conjugative Campylobacter jejuni plasmids. J Infect 50:12–21 [View Article][PubMed]
    [Google Scholar]
  42. Sellars M. J., Hall S. J., Kelly D. J. ( 2002). Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184:4187–4196 [View Article][PubMed]
    [Google Scholar]
  43. Szymanski C. M., King M., Haardt M., Armstrong G. D. ( 1995). Campylobacter jejuni motility and invasion of Caco-2 cells. Infect Immun 63:4295–4300[PubMed]
    [Google Scholar]
  44. Tareen A. M., Dasti J. I., Zautner A. E., Gross U., Lugert R. ( 2010). Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology 156:3123–3135 [View Article][PubMed]
    [Google Scholar]
  45. Thies F. L., Weishaupt A., Karch H., Hartung H. P., Giegerich G. ( 1999). Cloning, sequencing and molecular analysis of the Campylobacter jejuni groESL bicistronic operon. Microbiology 145:89–98 [View Article][PubMed]
    [Google Scholar]
  46. van Vliet A. H., Ketley J. M. ( 2001). Pathogenesis of enteric Campylobacter infection. Symp Ser Soc Appl Microbiol 30:45S–56S[PubMed] [CrossRef]
    [Google Scholar]
  47. Velayudhan J., Kelly D. J. ( 2002). Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148:685–694[PubMed]
    [Google Scholar]
  48. Wassenaar T. M., Bleumink-Pluym N. M., van der Zeijst B. A. ( 1991). Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 10:2055–2061[PubMed]
    [Google Scholar]
  49. Weerakoon D. R., Borden N. J., Goodson C. M., Grimes J., Olson J. W. ( 2009). The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology. Microb Pathog 47:8–15 [View Article][PubMed]
    [Google Scholar]
  50. Yao R., Burr D. H., Doig P., Trust T. J., Niu H., Guerry P. ( 1994). Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14:883–893 [View Article][PubMed]
    [Google Scholar]
  51. Yao R., Burr D. H., Guerry P. ( 1997). CheY-mediated modulation of Campylobacter jejuni virulence. Mol Microbiol 23:1021–1031 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045567-0
Loading
/content/journal/micro/10.1099/mic.0.045567-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error