1887

Abstract

is considered to be the most virulent of the rapidly growing mycobacteria. Generation of bacterial gene knockout mutants has been a useful tool for studying factors that contribute to virulence of pathogenic bacteria. Until recently, the optimal genetic approach to generation of gene knockout mutants was not clear. Based on the recent identification of genetic recombineering as the preferred approach, a mutant was generated in which the gene , critical to glycopeptidolipid synthesis, was deleted. Compared to the previously well-characterized parental strain 390S, the deletion mutant had lost sliding motility and the ability to form biofilm, but acquired the ability to replicate in human macrophages and stimulate macrophage Toll-like receptor 2. This study demonstrates that deletion of a gene associated with expression of a cell-wall lipid can result in acquisition of an immunostimulatory, invasive bacterial phenotype and has important implications for the study of pathogenesis at the cellular level.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046557-0
2011-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1187.html?itemId=/content/journal/micro/10.1099/mic.0.046557-0&mimeType=html&fmt=ahah

References

  1. Barrow W. W., Ullom B. P., Brennan P. J. 1980; Peptidoglycolipid nature of the superficial cell wall sheath of smooth-colony-forming mycobacteria. J Bacteriol 144:814–822
    [Google Scholar]
  2. Brennan P. J., Goren M. D. 1979; Structural studies on the type-specific antigens and lipids of the Mycobacterium avium - Mycobacterium intracellulare - Mycobacterium scrofulaceum complex. J Biol Chem 254:4205–4211
    [Google Scholar]
  3. Brennan P. J., Nikaido H. 1995; The envelope of mycobacteria. Annu Rev Biochem 64:29–63
    [Google Scholar]
  4. Byrd T. F. 1997; Tumor necrosis factor alpha (TNF α ) promotes growth of virulent M. tuberculosis in human monocytes: iron-mediated growth suppression is correlated with decreased release of TNF α from iron-treated, infected monocytes. J Clin Invest 99:2518–2529
    [Google Scholar]
  5. Byrd T. F., Horwitz M. A. 1989; Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest 83:1457–1465
    [Google Scholar]
  6. Byrd T. F., Lyons C. R. 1999; Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection. Infect Immun 67:4700–4707
    [Google Scholar]
  7. Catherinot E., Roux A. L., Macheras E., Hubert D., Matmar M., Dannhoffer L., Chinet T., Morand P., Poyart C. other authors 2009; Acute respiratory failure involving an R variant of Mycobacterium abscessus . J Clin Microbiol 47:271–274
    [Google Scholar]
  8. Ceri H., Olson M. E., Stremick C., Read R. R., Morck D., Buret A. 1999; The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776
    [Google Scholar]
  9. Chua J., Vergne I., Master S., Deretic V. 2004; A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr Opin Microbiol 7:71–77
    [Google Scholar]
  10. Cullen A. R., Cannon C. L., Mark E. J., Colin A. A. 2000; Mycobacterium abscessus infection in cystic fibrosis. Colonization or infection? Am J Respir Crit Care Med 161:641–645
    [Google Scholar]
  11. Daley C. L., Griffith D. E. 2002; Pulmonary disease caused by rapidly growing mycobacteria. Clin Chest Med 23:623–632 vii:
    [Google Scholar]
  12. De Groote M. A., Huitt G. 2006; Infections due to rapidly growing mycobacteria. Clin Infect Dis 42:1756–1763
    [Google Scholar]
  13. Driessen N. N., Stoop E. J. M., Ummels R., Gurcha S. S., Mishra A. K., Larrouy-Maumus G., Nigou J., Gilleron M., Puzo G. other authors 2010; Mycobacterium marinum MMAR_2380, a predicted transmembrane acyltransferase, is essential for the presence of the mannose cap on lipoarabinomannan. Microbiology 156:3492–3502
    [Google Scholar]
  14. Eckstein T. M., Inamine J. M., Lambert M. L., Belisle J. T. 2000; A genetic mechanism for deletion of the ser2 gene cluster and formation of rough morphological variants of Mycobacterium avium . J Bacteriol 182:6177–6182
    [Google Scholar]
  15. Fauroux B., Delaisi B., Clément A., Saizou C., Moissenet D., Truffot-Pernot C., Tournier G., Vu Thien H. 1997; Mycobacterial lung disease in cystic fibrosis: a prospective study. Pediatr Infect Dis J 16:354–358
    [Google Scholar]
  16. Greendyke R., Byrd T. F. 2008; Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob Agents Chemother 52:2019–2026
    [Google Scholar]
  17. Griffith D. E., Girard W. M., Wallace R. J. Jr 1993; Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis 147:1271–1278
    [Google Scholar]
  18. Griffith D. E., Aksamit T., Brown-Elliott B. A., Catanzaro A., Daley C., Gordin F., Holland S. M., Horsburgh R., Huitt G. other authors 2007; An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416
    [Google Scholar]
  19. Howard S. T., Byrd T. F. 2000; The rapidly growing mycobacteria: saprophytes and parasites. Microbes Infect 2:1845–1853
    [Google Scholar]
  20. Howard N. S., Gomez J. E., Ko C., Bishai W. R. 1995; Color selection with a hygromycin-resistance-based Escherichia coli -mycobacterial shuttle vector. Gene 166:181–182
    [Google Scholar]
  21. Howard S. T., Byrd T. F., Lyons C. R. 2002; A polymorphic region in Mycobacterium abscessus contains a novel insertion sequence element. Microbiology 148:2987–2996
    [Google Scholar]
  22. Howard S. T., Rhoades E., Recht J., Pang X., Alsup A., Kolter R., Lyons C. R., Byrd T. F. 2006; Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 152:1581–1590
    [Google Scholar]
  23. Jönsson B. E., Gilljam M., Lindblad A., Ridell M., Wold A. E., Welinder-Olsson C. 2007; Molecular epidemiology of Mycobacterium abscessus , with focus on cystic fibrosis. J Clin Microbiol 45:1497–1504
    [Google Scholar]
  24. Kaur D., McNeil M. R., Khoo K. H., Chatterjee D., Crick D. C., Jackson M., Brennan P. J. 2007; New insights into the biosynthesis of mycobacterial lipomannan arising from deletion of a conserved gene. J Biol Chem 282:27133–27140
    [Google Scholar]
  25. Krutzik S. R., Modlin R. L. 2004; The role of Toll-like receptors in combating mycobacteria. Semin Immunol 16:35–41
    [Google Scholar]
  26. Medjahed H., Reyrat J. M. 2009; Construction of Mycobacterium abscessus defined glycopeptidolipid mutants: comparison of genetic tools. Appl Environ Microbiol 75:1331–1338
    [Google Scholar]
  27. Olivier K. N., Weber D. J., Wallace R. J. Jr, Faiz A. R., Lee J. H., Zhang Y., Brown-Elliot B. A., Handler A., Wilson R. W. other authors 2003; Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med 167:828–834
    [Google Scholar]
  28. Petrini B. 2006; Mycobacterium abscessus : an emerging rapid-growing potential pathogen. APMIS 114:319–328
    [Google Scholar]
  29. Raynaud C., Papavinasasundaram K. G., Speight R. A., Springer B., Sander P., Böttger E. C., Colston M. J., Draper P. 2002; The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis . Mol Microbiol 46:191–201
    [Google Scholar]
  30. Recht J., Martínez A., Torello S., Kolter R. 2000; Genetic analysis of sliding motility in Mycobacterium smegmatis . J Bacteriol 182:4348–4351
    [Google Scholar]
  31. Rhoades E. R., Archambault A. S., Greendyke R., Hsu F., Streeter C., Byrd T. F. 2009; Mycobacterium abscessus glycopeptidolipids mask underlying cell wall phosphatidyl- myo -inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2. J Immunol 183:1997–2007
    [Google Scholar]
  32. Ripoll F., Deshayes C., Pasek S., Laval F., Beretti J. L., Biet F., Risler J. L., Daffé M., Etienne G. other authors 2007; Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae . BMC Genomics 8:114
    [Google Scholar]
  33. Ripoll F., Pasek S., Schenowitz C., Dossat C., Barbe V., Rottman M., Macheras E., Heym B., Herrmann J. L. other authors 2009; Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus . PLoS ONE 4:e5660
    [Google Scholar]
  34. Sanguinetti M., Ardito F., Fiscarelli E., La Sorda M., D'Argenio P., Ricciotti G., Fadda G. 2001; Fatal pulmonary infection due to multidrug-resistant Mycobacterium abscessus in a patient with cystic fibrosis. J Clin Microbiol 39:816–819
    [Google Scholar]
  35. Scherman H., Kaur D., Pham H., Skovierová H. S., Jackson M., Brennan P. J. 2009; Identification of a polyprenylphosphomannosyl synthase involved in the synthesis of mycobacterial mannosides. J Bacteriol 191:6769–6772
    [Google Scholar]
  36. Schlesinger L. S., Hull S. R., Kaufman T. M. 1994; Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152:4070–4079
    [Google Scholar]
  37. Sermet-Gaudelus I., Le Bourgeois M., Pierre-Audigier C., Offredo C., Guillemot D., Halley S., Akoua-Koffi C., Vincent V., Sivadon-Tardy V. other authors 2003; Mycobacterium abscessus and children with cystic fibrosis. Emerg Infect Dis 9:1587–1591
    [Google Scholar]
  38. Sherwood J. T., Mitchell J. D., Pomerantz M. 2005; Completion pneumonectomy for chronic mycobacterial disease. J Thorac Cardiovasc Surg 129:1258–1265
    [Google Scholar]
  39. Sweet L., Schorey J. S. 2006; Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. J Leukoc Biol 80:415–423
    [Google Scholar]
  40. Torrelles J. B., Azad A. K., Schlesinger L. S. 2006; Fine discrimination in the recognition of individual species of phosphatidyl- myo -inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J Immunol 177:1805–1816
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046557-0
Loading
/content/journal/micro/10.1099/mic.0.046557-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error