1887

Abstract

The A3(2) sporulation gene is the paradigm of a family of genes (, ike) that are confined to actinobacteria. The chromosome of contains 11 genes, among which five are conserved in many actinobacteria: itself; , a sporulation gene; , which is required for multi-drug resistance; and and , whose roles had previously been little studied. We succeeded in disrupting and the six non-conserved genes, but could not disrupt . Although mutations in the six non-conserved genes (including some multiple mutants) produced no readily detectable phenotype, mutations in had novel and complex effects. The aerial mycelium of mutants was coloured red, because of the ectopic presence of pigmented antibiotics (actinorhodin and undecylprodigiosin) normally confined to lower parts of wild-type colonies, and consisted almost entirely of non-sporulating, thin, straight filaments, often bundled together in a fibrillar matrix. Rare spore chains were also formed, which exhibited wild-type properties but were genetically still mutants. A mutant achieved higher biomass than the wild-type. Microarray analysis indicated major transcriptional changes in a mutant: using a relatively stringent cut-off, 183 genes were overexpressed, including genes for assimilative primary metabolism and actinorhodin biosynthesis, and 103 were underexpressed, including genes associated with stages of aerial hyphal growth. We suggest that WblA is important in both the slow-down of biomass accumulation and the change from aerial hyphal initial cells to the subapical stem and apical compartments that precede sporulation; and that the mutant aerial mycelium consists of recapitulated defective aerial hyphal initial cells.

Funding
This study was supported by the:
  • BBSRC (Award 83/EGH16080, 208/IGF12432 and 208/P10321)
  • John Innes Foundation
  • BBSRC
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.047555-0
2011-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1312.html?itemId=/content/journal/micro/10.1099/mic.0.047555-0&mimeType=html&fmt=ahah

References

  1. Alam M. S., Garg S. K., Agrawal P. ( 2007). Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe–4S] cluster co-ordinating protein disulphide reductase. Mol Microbiol 63:1414–1431 [View Article][PubMed]
    [Google Scholar]
  2. Alam M. S., Garg S. K., Agrawal P. ( 2009). Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J 276:76–93 [View Article][PubMed]
    [Google Scholar]
  3. Ausmees N., Wahlstedt H., Bagchi S., Elliot M. A., Buttner M. J., Flärdh K. ( 2007). SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa. Mol Microbiol 65:1458–1473 [View Article][PubMed]
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeño-Tárraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H. et al. ( 2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147 [View Article][PubMed]
    [Google Scholar]
  5. Bentley S. D., Brown S., Murphy L. D., Harris D. E., Quail M. A., Parkhill J., Barrell B. G., McCormick J. R., Santamaria R. I. et al. ( 2004). SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51:1615–1628 [View Article][PubMed]
    [Google Scholar]
  6. Bibb M. J., Molle V., Buttner M. J. ( 2000). σBldN, an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 182:4606–4616 [View Article][PubMed]
    [Google Scholar]
  7. Bierman M., Logan R., O’Brien K., Seno E. T., Rao R. N., Schoner B. E. ( 1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [View Article][PubMed]
    [Google Scholar]
  8. Bucca G., Brassington A. M., Hotchkiss G., Mersinias V., Smith C. P. ( 2003). Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol Microbiol 50:153–166 [View Article][PubMed]
    [Google Scholar]
  9. Capstick D. S., Willey J. M., Buttner M. J., Elliot M. A. ( 2007). SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor . Mol Microbiol 64:602–613 [View Article][PubMed]
    [Google Scholar]
  10. Chater K. F. ( 1972). A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor . J Gen Microbiol 72:9–28[PubMed] [CrossRef]
    [Google Scholar]
  11. Chater K. F. ( 1998). Taking a genetic scalpel to the Streptomyces colony. Microbiology 144:1465–1478 [View Article]
    [Google Scholar]
  12. Chater K. F., Chandra G. ( 2006). The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30:651–672 [View Article][PubMed]
    [Google Scholar]
  13. Chater K. F., Biró S., Lee K. J., Palmer T., Schrempf H. ( 2010). The complex extracellular biology of Streptomyces . FEMS Microbiol Rev 34:171–198 [View Article][PubMed]
    [Google Scholar]
  14. Cho Y. H., Lee E. J., Roe J. H. ( 2000). A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor . Mol Microbiol 35:150–160 [View Article][PubMed]
    [Google Scholar]
  15. Cho Y. H., Lee E. J., Ahn B. E., Roe J. H. ( 2001). SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor . Mol Microbiol 42:205–214 [View Article][PubMed]
    [Google Scholar]
  16. Choulet F., Aigle B., Gallois A., Mangenot S., Gerbaud C., Truong C., Francou F.-X., Fourrier C., Guérineau M. et al. ( 2006). Evolution of the terminal regions of the Streptomyces linear chromosome. Mol Biol Evol 23:2361–2369 [View Article][PubMed]
    [Google Scholar]
  17. Claessen D., Wösten H. A. B., van Keulen G., Faber O. G., Alves A. M. C. R., Meijer W. G., Dijkhuizen L. ( 2002). Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44:1483–1492 [View Article][PubMed]
    [Google Scholar]
  18. Claessen D., Rink R., de Jong W., Siebring J., de Vreugd P., Boersma F. G. H., Dijkhuizen L., Wosten H. A. B. ( 2003). A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726 [View Article][PubMed]
    [Google Scholar]
  19. Claessen D., Stokroos I., Deelstra H. J., Penninga N. A., Bormann C., Salas J. A., Dijkhuizen L., Wösten H. A. B. ( 2004). The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53:433–443 [View Article][PubMed]
    [Google Scholar]
  20. Crack J. C., den Hengst C. D., Jakimowicz P., Subramanian S., Johnson M. K., Buttner M. J., Thomson A. J., Le Brun N. E. ( 2009). Characterization of [4Fe–4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 48:12252–12264 [View Article][PubMed]
    [Google Scholar]
  21. Crack J. C., Smith L. J., Stapleton M. R., Peck J., Watmough N. J., Buttner M. J., Buxton R. S., Green J., Oganesyan V. S. et al. ( 2011). Mechanistic insight into the nitrosylation of the [4Fe–4S] cluster of WhiB-like proteins. J Am Chem Soc 133:1112–1121 [View Article][PubMed]
    [Google Scholar]
  22. Dalton K. A., Thibessard A., Hunter J. I., Kelemen G. H. ( 2007). A novel compartment, the ‘subapical stem’ of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor . Mol Microbiol 64:719–737 [View Article][PubMed]
    [Google Scholar]
  23. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  24. Davis N. K., Chater K. F. ( 1992). The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genet 232:351–358 [View Article][PubMed]
    [Google Scholar]
  25. de Jong W., Manteca A., Sanchez J., Bucca G., Smith C. P., Dijkhuizen L., Claessen D., Wösten H. A. ( 2009a). NepA is a structural cell wall protein involved in maintenance of spore dormancy in Streptomyces coelicolor . Mol Microbiol 71:1591–1603 [View Article][PubMed]
    [Google Scholar]
  26. de Jong W., Wösten H. A. B., Dijkhuizen L., Claessen D. ( 2009b). Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73:1128–1140 [View Article][PubMed]
    [Google Scholar]
  27. Del Sol R., Armstrong I., Wright C., Dyson P. ( 2007). Characterization of changes to the cell surface during the life cycle of Streptomyces coelicolor: atomic force microscopy of living cells. J Bacteriol 189:2219–2225 [View Article][PubMed]
    [Google Scholar]
  28. den Hengst C. D., Buttner M. J. ( 2008). Redox control in actinobacteria. Biochim Biophys Acta 1780:1201–1216[PubMed] [CrossRef]
    [Google Scholar]
  29. Di Berardo C., Capstick D. S., Bibb M. J., Findlay K. C., Buttner M. J., Elliot M. A. ( 2008). Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor . J Bacteriol 190:5879–5889 [View Article][PubMed]
    [Google Scholar]
  30. Donovan C., Bramkamp M. ( 2009). Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155:1786–1799 [View Article][PubMed]
    [Google Scholar]
  31. Elliot M. A., Karoonuthaisiri N., Huang J. Q., Bibb M. J., Cohen S. N., Kao C. M., Buttner M. J. ( 2003). The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor . Genes Dev 17:1727–1740 [View Article][PubMed]
    [Google Scholar]
  32. Flärdh K., Findlay K. C., Chater K. F. ( 1999). Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology 145:2229–2243[PubMed]
    [Google Scholar]
  33. Floriano B., Bibb M. J. ( 1996). afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396 [View Article][PubMed]
    [Google Scholar]
  34. Gao B., Paramanathan R., Gupta R. S. ( 2006). Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 90:69–91 [View Article][PubMed]
    [Google Scholar]
  35. Garg S. K., Suhail Alam M., Soni V., Radha Kishan K. V., Agrawal P. ( 2007). Characterization of Mycobacterium tuberculosis WhiB1/Rv3219 as a protein disulfide reductase. Protein Expr Purif 52:422–432 [View Article][PubMed]
    [Google Scholar]
  36. Geiman D. E., Raghunand T. R., Agarwal N., Bishai W. R. ( 2006). Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Chemother 50:2836–2841 [View Article][PubMed]
    [Google Scholar]
  37. Gomez J. E., Bishai W. R. ( 2000). whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A 97:8554–8559 [View Article][PubMed]
    [Google Scholar]
  38. Guo M., Feng H., Zhang J., Wang W., Wang Y., Li Y., Gao C., Chen H., Feng Y., He Z. G. ( 2009). Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res 19:1301–1308 [View Article][PubMed]
    [Google Scholar]
  39. Gusarov I., Shatalin K., Starodubtseva M., Nudler E. ( 2009). Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384 [View Article][PubMed]
    [Google Scholar]
  40. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. ( 2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546 [View Article][PubMed]
    [Google Scholar]
  41. Gust B., Chandra G., Jakimowicz D., Yuqing T., Bruton C. J., Chater K. F. ( 2004). Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces . Adv Appl Microbiol 54:107–128 [View Article][PubMed]
    [Google Scholar]
  42. Gust B., O’Rourke S., Bird N., Kieser T., Chater K. ( 2006). Recombineering in Streptomyces coelicolor FEMS Online Protocols;
    [Google Scholar]
  43. Hodgson D. A. ( 2000). Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238 [View Article][PubMed]
    [Google Scholar]
  44. Homerová D., Sevcíková J., Kormanec J. ( 2003). Characterization of the Streptomyces coelicolor A3(2) wblE gene, encoding a homologue of the sporulation transcription factor. Folia Microbiol (Praha) 48:489–495 [View Article][PubMed]
    [Google Scholar]
  45. Hopwood D. A., Wildermuth H., Palmer H. M. ( 1970). Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol 61:397–408[PubMed] [CrossRef]
    [Google Scholar]
  46. Huang J., Shi J., Molle V., Sohlberg B., Weaver D., Bibb M. J., Karoonuthaisiri N., Lih C. J., Kao C. M. et al. ( 2005). Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor . Mol Microbiol 58:1276–1287 [View Article][PubMed]
    [Google Scholar]
  47. Hümpel A., Gebhard S., Cook G. M., Berney M. ( 2010). The SigF regulon in Mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress. J Bacteriol 192:2491–2502 [View Article][PubMed]
    [Google Scholar]
  48. Jakimowicz P., Cheesman M. R., Bishai W. R., Chater K. F., Thomson A. J., Buttner M. J. ( 2005). Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe–4S] cluster. J Biol Chem 280:8309–8315 [View Article][PubMed]
    [Google Scholar]
  49. Jakimowicz D., Mouz S., Zakrzewska-Czerwinska Z., Chater K. F. ( 2006). Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor . J Bacteriol 188:1710–1720 [View Article][PubMed]
    [Google Scholar]
  50. Jiang H., Kendrick K. E. ( 2000). Characterization of ssfR and ssgA, two genes involved in sporulation of Streptomyces griseus . J Bacteriol 182:5521–5529 [View Article][PubMed]
    [Google Scholar]
  51. Kang S. H., Huang J., Lee H. N., Hur Y. A., Cohen S. N., Kim E. S. ( 2007). Interspecies DNA microarray analysis identifies wblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces . J Bacteriol 189:4315–4319 [View Article][PubMed]
    [Google Scholar]
  52. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. ( 2000). Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  53. Kim T. H., Park J. S., Kim H. J., Kim Y., Kim P., Lee H. S. ( 2005). The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem Biophys Res Commun 337:757–764 [View Article][PubMed]
    [Google Scholar]
  54. Kim D. W., Hesketh A., Kim E. S., Song J. Y., Lee D. H., Kim I. S., Chater K. F., Lee K. J. ( 2008). Complex extracellular interactions of proteases and a protease inhibitor influence multicellular development of Streptomyces coelicolor . Mol Microbiol 70:1180–1193 [View Article][PubMed]
    [Google Scholar]
  55. Kim S. H., Lee H. N., Kim H. J., Kim E. S. ( 2011). Transcriptome analysis of an antibiotic downregulator mutant and synergistic actinorhodin stimulation via disruption of a precursor flux regulator in Streptomyces coelicolor. . Appl Environ Microbiol 77:1872–1877 [CrossRef]
    [Google Scholar]
  56. Kwak J., Dharmatilake A. J., Jiang H., Kendrick K. E. ( 2001). Differential regulation of ftsZ transcription during septation of Streptomyces griseus . J Bacteriol 183:5092–5101 [View Article][PubMed]
    [Google Scholar]
  57. Langhorst M. F., Reuter A., Stuermer C. A. O. ( 2005). Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240 [View Article][PubMed]
    [Google Scholar]
  58. Lian W., Jayapal K. P., Charaniya S., Mehra S., Glod F., Kyung Y. S., Sherman D. H., Hu W. S. ( 2008). Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). BMC Genomics 9:56 [View Article][PubMed]
    [Google Scholar]
  59. López D., Kolter R. ( 2010). Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902 [View Article][PubMed]
    [Google Scholar]
  60. Molle V., Palframan W. J., Findlay K. C., Buttner M. J. ( 2000). WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J Bacteriol 182:1286–1295 [View Article][PubMed]
    [Google Scholar]
  61. Morris R. P., Nguyen L., Gatfield J., Visconti K., Nguyen K., Schnappinger D., Ehrt S., Liu Y., Heifets L. et al. ( 2005). Ancestral antibiotic resistance in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 102:12200–12205 [View Article][PubMed]
    [Google Scholar]
  62. Nieselt K., Battke F., Herbig A., Bruheim P., Wentzel A., Jakobsen O. M., Sletta H., Alam M. T., Merlo M. E. et al. ( 2010). The dynamic architecture of the metabolic switch in Streptomyces coelicolor . BMC Genomics 11:10 [View Article][PubMed]
    [Google Scholar]
  63. Paget M. S., Chamberlin L., Atrih A., Foster S. J., Buttner M. J. ( 1999). Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211[PubMed]
    [Google Scholar]
  64. Plaskitt K. A., Chater K. F. ( 1995). Influences of developmental genes on localized glycogen deposition in colonies of a mycelial prokaryote, Streptomyces coelicolor A3(2): a possible interface between metabolism and morphogenesis. Phil Trans Roy Soc B 347:105–121 [View Article]
    [Google Scholar]
  65. Raghunand T. R., Bishai W. R. ( 2006a). Mapping essential domains of Mycobacterium smegmatis WhmD: insights into WhiB structure and function. J Bacteriol 188:6966–6976 [View Article][PubMed]
    [Google Scholar]
  66. Raghunand T. R., Bishai W. R. ( 2006b). Mycobacterium smegmatis whmD and its homologue Mycobacterium tuberculosis whiB2 are functionally equivalent. Microbiology 152:2735–2747 [View Article][PubMed]
    [Google Scholar]
  67. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. ( 1996). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [View Article][PubMed]
    [Google Scholar]
  68. Rybniker J., Nowag A., van Gumpel E., Nissen N., Robinson N., Plum G., Hartmann P. ( 2010). Insights into the function of the WhiB-like protein of mycobacteriophage TM4 – a transcriptional inhibitor of WhiB2. Mol Microbiol 77:642–657 [View Article][PubMed]
    [Google Scholar]
  69. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  70. Singh A., Guidry L., Narasimhulu K. V., Mai D., Trombley J., Redding K. E., Giles G. I., Lancaster J. R. Jr, Steyn A. J. ( 2007). Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe–4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci U S A 104:11562–11567 [View Article][PubMed]
    [Google Scholar]
  71. Singh A., Crossman D. K., Mai D., Guidry L., Voskuil M. I., Renfrow M. B., Steyn A. J. ( 2009). Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5:e1000545 [View Article][PubMed]
    [Google Scholar]
  72. Smith L. J., Stapleton M. R., Fullstone G. J. M., Crack J. C., Thomson A. J., Le Brun N. E., Hunt D. M., Harvey E., Adinolfi S. et al. ( 2010). Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem J 432:417–427 [View Article][PubMed]
    [Google Scholar]
  73. Soliveri J., Vijgenboom E., Granozzi C., Plaskitt K. A., Chater K. F. ( 1993). Functional and evolutionary implications of a survey of various actinomycetes for homologues of two Streptomyces coelicolor sporulation genes. J Gen Microbiol 139:2569–2578 [CrossRef]
    [Google Scholar]
  74. Soliveri J. A., Gomez J., Bishai W. R., Chater K. F. ( 2000). Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146:333–343[PubMed]
    [Google Scholar]
  75. Steyn A. J. C., Collins D. M., Hondalus M. K., Jacobs W. R. Jr, Kawakami R. P., Bloom B. R. ( 2002). Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci U S A 99:3147–3152 [View Article][PubMed]
    [Google Scholar]
  76. Takano H., Tanaka T., Beppu T., Ueda K. ( 2008). Identification of sas, a conserved gene cluster involved in the regulation of aerial mycelium formation in Streptomyces griseus . Microbiology 154:3668–3675 [View Article][PubMed]
    [Google Scholar]
  77. Traag B. A., Kelemen G. H., Van Wezel G. P. ( 2004). Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2). Mol Microbiol 53:985–1000 [View Article][PubMed]
    [Google Scholar]
  78. van Keulen G., Hopwood D. A., Dijkhuizen L., Sawers R. G. ( 2005). Gas vesicles in actinomycetes: old buoys in novel habitats?. Trends Microbiol 13:350–354 [View Article][PubMed]
    [Google Scholar]
  79. van Wezel G. P., van der Meulen J., Kawamoto S., Luiten R. G. M., Koerten H. K., Kraal B. ( 2000). ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. J Bacteriol 182:5653–5662 [View Article][PubMed]
    [Google Scholar]
  80. Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G. F., Chater K. F., van Sinderen D. ( 2007). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548 [View Article][PubMed]
    [Google Scholar]
  81. Willemse J., Borst J. W., de Waal E., Bisseling T., van Wezel G. P. ( 2011). Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces . Genes Dev 25:89–99 [View Article][PubMed]
    [Google Scholar]
  82. Willey J. M., Willems A., Kodani S., Nodwell J. R. ( 2006). Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor . Mol Microbiol 59:731–742 [View Article][PubMed]
    [Google Scholar]
  83. Xu H., Chater K. F., Deng Z., Tao M. ( 2008). A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in streptomyces . J Bacteriol 190:4971–4978 [View Article][PubMed]
    [Google Scholar]
  84. Xu G., Wang J., Wang L., Tian X., Yang H., Fan K., Yang K., Tan H. ( 2010). “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.047555-0
Loading
/content/journal/micro/10.1099/mic.0.047555-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error