1887

Abstract

The virulence of depends on proteins that are produced by this bacterium. The production of virulence proteins depends on environmental factors, and two-component regulatory systems are considered to be involved in sensing these factors. One of the environmental factors is acid stimuli. We established knockout strains in all speculated two-component regulatory sensor proteins of the M1 clinical strain of and examined their relevance to acid stimuli. The parental strain and its derived knockout strains were cultured in a medium adjusted to pH 7.6 or 6.0, and their growth in broth was compared. The sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1622 two-component sensor protein is involved in sensing acid stimuli. To further examine the role of the Spy1622 two-component sensor protein in virulence, blood bactericidal assays and mouse infection model experiments were performed. We found that the knockout strain was less virulent than the parental strain, which suggests that the Spy1622 two-component sensor protein could play an important role in virulence.

Funding
This study was supported by the:
  • Ministry of Education, Science and Culture of the Japanese government (Award 21590485)
  • Ohyama Health Foundation Inc
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050534-0
2011-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3187.html?itemId=/content/journal/micro/10.1099/mic.0.050534-0&mimeType=html&fmt=ahah

References

  1. Banks D. J., Porcella S. F., Barbian K. D., Beres S. B., Philips L. E., Voyich J. M., DeLeo F. R., Martin J. M., Somerville G. A., Musser J. M. ( 2004). Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J Infect Dis 190:727–738 [View Article][PubMed]
    [Google Scholar]
  2. Beckert S., Kreikemeyer B., Podbielski A. ( 2001). Group A streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect Immun 69:534–537 [View Article][PubMed]
    [Google Scholar]
  3. Beres S. B., Sylva G. L., Barbian K. D., Lei B., Hoff J. S., Mammarella N. D., Liu M. Y., Smoot J. C., Porcella S. F. et al. ( 2002). Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 99:10078–10083 [View Article][PubMed]
    [Google Scholar]
  4. Beres S. B., Richter E. W., Nagiec M. J., Sumby P., Porcella S. F., DeLeo F. R., Musser J. M. ( 2006). Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus . Proc Natl Acad Sci U S A 103:7059–7064 [View Article][PubMed]
    [Google Scholar]
  5. Boyle-Vavra S., Yin S., Daum R. S. ( 2006). The VraS/VraR two-component regulatory system required for oxacillin resistance in community-acquired methicillin-resistant Staphylococcus aureus . FEMS Microbiol Lett 262:163–171 [View Article][PubMed]
    [Google Scholar]
  6. Chaussee M. S., Ajdic D., Ferretti J. J. ( 1999). The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect Immun 67:1715–1722[PubMed]
    [Google Scholar]
  7. Chong P., Drake L., Biswas I. ( 2008). LiaS regulates virulence factor expression in Streptococcus mutans . Infect Immun 76:3093–3099 [View Article][PubMed]
    [Google Scholar]
  8. Cone L. A., Woodard D. R., Schlievert P. M., Tomory G. S. ( 1987). Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes . N Engl J Med 317:146–149 [View Article][PubMed]
    [Google Scholar]
  9. Cunningham M. W. ( 2000). Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13:470–511 [View Article][PubMed]
    [Google Scholar]
  10. Dalton T. L., Scott J. R. ( 2004). CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes . J Bacteriol 186:3928–3937 [View Article][PubMed]
    [Google Scholar]
  11. Eguchi Y., Kubo N., Matsunaga H., Igarashi M., Utsumi R. ( 2011). Development of an antivirulence drug against Streptococcus mutans: repression of biofilm formation, acid tolerance, and competence by a histidine kinase inhibitor, walkmycin C. Antimicrob Agents Chemother 55:1475–1484 [View Article][PubMed]
    [Google Scholar]
  12. Ehrt S., Schnappinger D. ( 2009). Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11:1170–1178 [View Article][PubMed]
    [Google Scholar]
  13. Fabret C., Feher V. A., Hoch J. A. ( 1999). Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181:1975–1983[PubMed]
    [Google Scholar]
  14. Ferretti J. J., McShan W. M., Ajdic D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N. et al. ( 2001). Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci U S A 98:4658–4663 [View Article][PubMed]
    [Google Scholar]
  15. Gardete S., Wu S. W., Gill S., Tomasz A. ( 2006). Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus . Antimicrob Agents Chemother 50:3424–3434 [View Article][PubMed]
    [Google Scholar]
  16. Green N. M., Zhang S., Porcella S. F., Nagiec M. J., Barbian K. D., Beres S. B., LeFebvre R. B., Musser J. M. ( 2005). Genome sequence of a serotype M28 strain of group A Streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity. J Infect Dis 192:760–770 [View Article][PubMed]
    [Google Scholar]
  17. Hancock L., Perego M. ( 2002). Two-component signal transduction in Enterococcus faecalis . J Bacteriol 184:5819–5825 [View Article][PubMed]
    [Google Scholar]
  18. Hasegawa T., Torii K., Hashikawa S., Iinuma Y., Ohta M. ( 2002a). Cloning and characterization of two novel DNases from Streptococcus pyogenes . Arch Microbiol 177:451–456 [View Article][PubMed]
    [Google Scholar]
  19. Hasegawa T., Torii K., Hashikawa S., Iinuma Y., Ohta M. ( 2002b). Cloning and characterization of the deoxyribonuclease sdα gene from Streptococcus pyogenes . Curr Microbiol 45:13–17 [View Article][PubMed]
    [Google Scholar]
  20. Hasegawa T., Minami M., Okamoto A., Tatsuno I., Isaka M., Ohta M. ( 2010a). Characterization of a virulence-associated and cell-wall-located DNase of Streptococcus pyogenes . Microbiology 156:184–190 [View Article][PubMed]
    [Google Scholar]
  21. Hasegawa T., Okamoto A., Kamimura T., Tatsuno I., Hashikawa S. N., Yabutani M., Matsumoto M., Yamada K., Isaka M. et al. ( 2010b). Detection of invasive protein profile of Streptococcus pyogenes M1 isolates from pharyngitis patients. APMIS 118:167–178 [View Article][PubMed]
    [Google Scholar]
  22. Hauser A. R., Stevens D. L., Kaplan E. L., Schlievert P. M. ( 1991). Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes isolates associated with toxic shock-like syndrome. J Clin Microbiol 29:1562–1567[PubMed]
    [Google Scholar]
  23. Holden M. T., Scott A., Cherevach I., Chillingworth T., Churcher C., Cronin A., Dowd L., Feltwell T., Hamlin N. et al. ( 2007). Complete genome of acute rheumatic fever-associated serotype M5 Streptococcus pyogenes strain Manfredo. J Bacteriol 189:1473–1477 [View Article][PubMed]
    [Google Scholar]
  24. Huynh K. K., Grinstein S. ( 2007). Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 71:452–462 [View Article][PubMed]
    [Google Scholar]
  25. Kinchen J. M., Ravichandran K. S. ( 2008). Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795 [View Article][PubMed]
    [Google Scholar]
  26. Kreikemeyer B., McIver K. S., Podbielski A. ( 2003). Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol 11:224–232 [View Article][PubMed]
    [Google Scholar]
  27. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. et al. ( 1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . Nature 390:249–256 [View Article][PubMed]
    [Google Scholar]
  28. Kuroda M., Kuwahara-Arai K., Hiramatsu K. ( 2000). Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem Biophys Res Commun 269:485–490 [View Article][PubMed]
    [Google Scholar]
  29. Kuroda M., Kuroda H., Oshima T., Takeuchi F., Mori H., Hiramatsu K. ( 2003). Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus . Mol Microbiol 49:807–821 [View Article][PubMed]
    [Google Scholar]
  30. Lancefield R. C. ( 1957). Differentiation of group A streptococci with a common R antigen into three serological types, with special reference to the bactericidal test. J Exp Med 106:525–544 [View Article][PubMed]
    [Google Scholar]
  31. Li Y. H., Lau P. C., Tang N., Svensäter G., Ellen R. P., Cvitkovitch D. G. ( 2002). Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans . J Bacteriol 184:6333–6342 [View Article][PubMed]
    [Google Scholar]
  32. Loughman J. A., Caparon M. ( 2006). Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. J Bacteriol 188:399–408 [View Article][PubMed]
    [Google Scholar]
  33. Lukomski S., Hoe N. P., Abdi I., Rurangirwa J., Kordari P., Liu M., Dou S. J., Adams G. G., Musser J. M. ( 2000). Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun 68:535–542 [View Article][PubMed]
    [Google Scholar]
  34. Lyon W. R., Gibson C. M., Caparon M. G. ( 1998). A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes . EMBO J 17:6263–6275 [View Article][PubMed]
    [Google Scholar]
  35. Manetti A. G., Köller T., Becherelli M., Buccato S., Kreikemeyer B., Podbielski A., Grandi G., Margarit I. ( 2010). Environmental acidification drives S. pyogenes pilus expression and microcolony formation on epithelial cells in a FCT-dependent manner. PLoS ONE 5:e13864 [View Article][PubMed]
    [Google Scholar]
  36. Mascher T. ( 2006). Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264:133–144 [View Article][PubMed]
    [Google Scholar]
  37. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D. ( 2003). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604 [View Article][PubMed]
    [Google Scholar]
  38. Mascher T., Zimmer S. L., Smith T. A., Helmann J. D. ( 2004). Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis . Antimicrob Agents Chemother 48:2888–2896 [View Article][PubMed]
    [Google Scholar]
  39. McIver K. S., Heath A. S., Green B. D., Scott J. R. ( 1995). Specific binding of the activator Mga to promoter sequences of the emm and scpA genes in the group A streptococcus. J Bacteriol 177:6619–6624[PubMed]
    [Google Scholar]
  40. McShan W. M., Ferretti J. J., Karasawa T., Suvorov A. N., Lin S., Qin B., Jia H., Kenton S., Najar F. et al. ( 2008). Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes . J Bacteriol 190:7773–7785 [View Article][PubMed]
    [Google Scholar]
  41. Minami M., Kamimura T., Isaka M., Tatsuno I., Ohta M., Hasegawa T. ( 2010). Clindamycin-induced CovS-mediated regulation of the production of virulent exoproteins streptolysin O, NAD glycohydrolase, and streptokinase in Streptococcus pyogenes . Antimicrob Agents Chemother 54:98–102 [View Article][PubMed]
    [Google Scholar]
  42. Molinari G., Rohde M., Talay S. R., Chhatwal G. S., Beckert S., Podbielski A. ( 2001). The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol Microbiol 40:99–114 [View Article][PubMed]
    [Google Scholar]
  43. Nakagawa I., Kurokawa K., Yamashita A., Nakata M., Tomiyasu Y., Okahashi N., Kawabata S., Yamazaki K., Shiba T. et al. ( 2003). Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res 13:6A1042–1055 [View Article][PubMed]
    [Google Scholar]
  44. Nakamura T., Hasegawa T., Torii K., Hasegawa Y., Shimokata K., Ohta M. ( 2004). Two-dimensional gel electrophoresis analysis of the abundance of virulent exoproteins of group A streptococcus caused by environmental changes. Arch Microbiol 181:74–81 [View Article][PubMed]
    [Google Scholar]
  45. Okada N., Tatsuno I., Hanski E., Caparon M., Sasakawa C. ( 1998). Streptococcus pyogenes protein F promotes invasion of HeLa cells. Microbiology 144:3079–3086 [View Article][PubMed]
    [Google Scholar]
  46. Podbielski A., Woischnik M., Leonard B. A., Schmidt K. H. ( 1999). Characterization of nra, a global negative regulator gene in group A streptococci. Mol Microbiol 31:1051–1064 [View Article][PubMed]
    [Google Scholar]
  47. Reichardt W., Müller-Alouf H., Alouf J. E., Köhler W. ( 1992). Erythrogenic toxins A, B and C: occurrence of the genes and exotoxin formation from clinical Streptococcus pyogenes strains associated with streptococcal toxic shock-like syndrome. FEMS Microbiol Lett 79:313–322[PubMed] [CrossRef]
    [Google Scholar]
  48. Santi I., Grifantini R., Jiang S. M., Brettoni C., Grandi G., Wessels M. R., Soriani M. ( 2009). CsrRS regulates group B Streptococcus virulence gene expression in response to environmental pH: a new perspective on vaccine development. J Bacteriol 191:5387–5397 [View Article][PubMed]
    [Google Scholar]
  49. Sawai J., Hasegawa T., Kamimura T., Okamoto A., Ohmori D., Nosaka N., Yamada K., Torii K., Ohta M. ( 2007). Growth phase-dependent effect of clindamycin on production of exoproteins by Streptococcus pyogenes . Antimicrob Agents Chemother 51:461–467 [View Article][PubMed]
    [Google Scholar]
  50. Senadheera D., Krastel K., Mair R., Persadmehr A., Abranches J., Burne R. A., Cvitkovitch D. G. ( 2009). Inactivation of VicK affects acid production and acid survival of Streptococcus mutans . J Bacteriol 191:6415–6424 [View Article][PubMed]
    [Google Scholar]
  51. Sitkiewicz I., Green N. M., Guo N., Bongiovanni A. M., Witkin S. S., Musser J. M. ( 2010). Adaptation of group A Streptococcus to human amniotic fluid. PLoS ONE 5:e9785 [View Article][PubMed]
    [Google Scholar]
  52. Smoot J. C., Barbian K. D., Van Gompel J. J., Smoot L. M., Chaussee M. S., Sylva G. L., Sturdevant D. E., Ricklefs S. M., Porcella S. F. et al. ( 2002). Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A 99:4668–4673 [View Article][PubMed]
    [Google Scholar]
  53. Sumby P., Porcella S. F., Madrigal A. G., Barbian K. D., Virtaneva K., Ricklefs S. M., Sturdevant D. E., Graham M. R., Vuopio-Varkila J. et al. ( 2005). Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis 192:771–782 [View Article][PubMed]
    [Google Scholar]
  54. Tanaka M., Hasegawa T., Okamoto A., Torii K., Ohta M. ( 2005). Effect of antibiotics on group A streptococcus exoprotein production analyzed by two-dimensional gel electrophoresis. Antimicrob Agents Chemother 49:88–96 [View Article][PubMed]
    [Google Scholar]
  55. Tatsuno I., Isaka M., Minami M., Hasegawa T. ( 2010). NADase as a target molecule of in vivo suppression of the toxicity in the invasive M-1 group A streptococcal isolates. BMC Microbiol 10:144 [View Article][PubMed]
    [Google Scholar]
  56. Treviño J., Perez N., Ramirez-Peña E., Liu Z., Shelburne S. A. III, Musser J. M., Sumby P. ( 2009). CovS simultaneously activates and inhibits the CovR-mediated repression of distinct subsets of group A Streptococcus virulence factor-encoding genes. Infect Immun 77:3141–3149 [View Article][PubMed]
    [Google Scholar]
  57. Vandal O. H., Nathan C. F., Ehrt S. ( 2009). Acid resistance in Mycobacterium tuberculosis . J Bacteriol 191:4714–4721 [View Article][PubMed]
    [Google Scholar]
  58. von Delwig A., Bailey E., Gibbs D. M., Robinson J. H. ( 2002). The route of bacterial uptake by macrophages influences the repertoire of epitopes presented to CD4 T cells. Eur J Immunol 32:3714–3719 [View Article][PubMed]
    [Google Scholar]
  59. Zhang J., Biswas I. ( 2009). A phenotypic microarray analysis of a Streptococcus mutans liaS mutant. Microbiology 155:61–68 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050534-0
Loading
/content/journal/micro/10.1099/mic.0.050534-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error