1887

Abstract

A large number of polypeptides are attached to poly(3-hydroxybutyrate) (PHB) granules of , such as PHB synthase (PhaC1), several PHB depolymerases (PhaZs) and phasins (PhaPs), the regulator protein PhaR, and possibly others. In this study we used the bacterial adenylate cyclase-based two-hybrid assay to investigate interactions between known PHB granule-associated proteins (PGAPs) and to screen for new PGAPs. The utility of the system was tested by the verification of previously postulated interactions of the PHB synthase subunits of (PhaC1 homo-oligomerization) and of (PhaC–PhaR hetero-oligomerization). Nine proteins (PhaA, PhaB1, PhaC1, PhaP1–PhaP4, PhaZ1 and PhaR), with established functions in PHB metabolism of , were tested for interaction in all combinations. While no significant interaction was detected between the PHB synthase PhaC1 and any of the other eight tested Pha proteins, strong interactions were found between all phasin proteins, in particular between PhaP2 and PhaP4. When PhaP2 was used as bait in a two-hybrid screening experiment with a genomic library of , the B1934 gene product was identified in 24 out of 53 isolated clones. B1934 encodes a hypothetical protein (15.7 kDa) with similarity to phasins of PHB-accumulating bacteria. A fusion protein of eYfp and the B1934 gene product colocalized with PHB granules, confirming that B1934 represents a new phasin (PhaP5). PhaP5 was not essential for PHB granule formation, but overexpression of PhaP5 increased the number of cells with PHB granules at the cell poles.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051508-0
2011-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2795.html?itemId=/content/journal/micro/10.1099/mic.0.051508-0&mimeType=html&fmt=ahah

References

  1. Abe T., Kobayashi T., Saito T. ( 2005). Properties of a novel intracellular poly(3-hydroxybutyrate) depolymerase with high specific activity (PhaZd) in Wautersia eutropha H16. J Bacteriol 187:6982–6990 [View Article][PubMed]
    [Google Scholar]
  2. Budde C. F., Mahan A. E., Lu J., Rha C., Sinskey A. J. ( 2010). Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J Bacteriol 192:5319–5328[PubMed] [CrossRef]
    [Google Scholar]
  3. Dennis D., Liebig C., Holley T., Thomas K. S., Khosla A., Wilson D., Augustine B. ( 2003). Preliminary analysis of polyhydroxyalkanoate inclusions using atomic force microscopy. FEMS Microbiol Lett 226:113–119 [View Article][PubMed]
    [Google Scholar]
  4. Dennis D., Sein V., Martinez E., Augustine B. ( 2008). PhaP is involved in the formation of a network on the surface of polyhydroxyalkanoate inclusions in Cupriavidus necator H16. J Bacteriol 190:555–563 [View Article][PubMed]
    [Google Scholar]
  5. Dove S. L., Hochschild A. ( 2001). Bacterial two-hybrid analysis of interactions between region 4 of the σ70 subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa. . J Bacteriol 183:6413–6421 [View Article][PubMed]
    [Google Scholar]
  6. Dove S. L., Hochschild A. ( 2004). A bacterial two-hybrid system based on transcription activation. Methods Mol Biol 261:231–246[PubMed]
    [Google Scholar]
  7. Fields S., Song O. ( 1989). A novel genetic system to detect protein–protein interactions. Nature 340:245–246 [View Article][PubMed]
    [Google Scholar]
  8. Handrick R., Reinhardt S., Jendrossek D. ( 2000). Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha. . J Bacteriol 182:5916–5918 [View Article][PubMed]
    [Google Scholar]
  9. Handrick R., Reinhardt S., Schultheiss D., Reichart T., Schüler D., Jendrossek V., Jendrossek D. ( 2004). Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (phasin). J Bacteriol 186:2466–2475 [View Article][PubMed]
    [Google Scholar]
  10. Jendrossek D. ( 2005). Fluorescence microscopical investigation of poly(3-hydroxybutyrate) granule formation in bacteria. Biomacromolecules 6:598–603 [View Article][PubMed]
    [Google Scholar]
  11. Jendrossek D. ( 2009). Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202 [View Article][PubMed]
    [Google Scholar]
  12. Jendrossek D., Selchow O., Hoppert M. ( 2007). Poly-(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum. . Appl Environ Microbiol 73:586–593 [View Article][PubMed]
    [Google Scholar]
  13. Karimova G., Pidoux J., Ullmann A., Ladant D. ( 1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756 [View Article][PubMed]
    [Google Scholar]
  14. Karimova G., Ullmann A., Ladant D. ( 2000a). Bordetella pertussis adenylate cyclase toxin as a tool to analyze molecular interactions in a bacterial two-hybrid system. Int J Med Microbiol 290:441–445[PubMed] [CrossRef]
    [Google Scholar]
  15. Karimova G., Ullmann A., Ladant D. ( 2000b). A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. . Methods Enzymol 328:59–73 [View Article][PubMed]
    [Google Scholar]
  16. Karimova G., Ullmann A., Ladant D. ( 2001). Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3:73–82[PubMed]
    [Google Scholar]
  17. Karimova G., Dautin N., Ladant D. ( 2005). Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243 [View Article][PubMed]
    [Google Scholar]
  18. Kidwell J., Valentin H. E., Dennis D. ( 1995). Regulated expression of the Alcaligenes eutrophus pha biosynthesis genes in Escherichia coli . Appl Environ Microbiol 61:1391–1398[PubMed]
    [Google Scholar]
  19. Kobayashi T., Shiraki M., Abe T., Sugiyama A., Saito T. ( 2003). Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J Bacteriol 185:3485–3490 [View Article][PubMed]
    [Google Scholar]
  20. Kobayashi T., Uchino K., Abe T., Yamazaki Y., Saito T. ( 2005). Novel intracellular 3-hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16. J Bacteriol 187:5129–5135 [View Article][PubMed]
    [Google Scholar]
  21. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  22. Kuchta K., Chi L., Fuchs H., Pötter M., Steinbüchel A. ( 2007). Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16. Biomacromolecules 8:657–662 [View Article][PubMed]
    [Google Scholar]
  23. Lenz O., Friedrich B. ( 1998). A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. . Proc Natl Acad Sci U S A 95:12474–12479 [View Article][PubMed]
    [Google Scholar]
  24. McCool G. J., Cannon M. C. ( 1999). Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. . J Bacteriol 181:585–592[PubMed]
    [Google Scholar]
  25. McCool G. J., Cannon M. C. ( 2001). PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. . J Bacteriol 183:4235–4243 [View Article][PubMed]
    [Google Scholar]
  26. Pieper-Fürst U., Madkour M. H., Mayer F., Steinbüchel A. ( 1994). Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber. . J Bacteriol 176:4328–4337[PubMed]
    [Google Scholar]
  27. Pohlmann A., Fricke W. F., Reinecke F., Kusian B., Liesegang H., Cramm R., Eitinger T., Ewering C., Pötter M. et al. ( 2006). Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262 [View Article][PubMed]
    [Google Scholar]
  28. Pötter M., Steinbüchel A. ( 2006). Biogenesis and structure of polyhydroxyalkanoate granules. Inclusions in Prokaryotes109–136 Shively J. M. Berlin, Heidelberg: Springer Verlag; [View Article]
    [Google Scholar]
  29. Pötter M., Madkour M. H., Mayer F., Steinbüchel A. ( 2002). Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426[PubMed]
    [Google Scholar]
  30. Pötter M., Müller H., Reinecke F., Wieczorek R., Fricke F., Bowien B., Friedrich B., Steinbüchel A. ( 2004). The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. . Microbiology 150:2301–2311 [View Article][PubMed]
    [Google Scholar]
  31. Pötter M., Müller H., Steinbüchel A. ( 2005). Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology 151:825–833 [View Article][PubMed]
    [Google Scholar]
  32. Raberg M., Reinecke F., Reichelt R., Malkus U., König S., Pötter M., Fricke W. F., Pohlmann A., Voigt B. et al. ( 2008). Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl Environ Microbiol 74:4477–4490 [View Article][PubMed]
    [Google Scholar]
  33. Rehm B. H. ( 2003). Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33 [View Article][PubMed]
    [Google Scholar]
  34. Rehm B. H. ( 2006). Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester synthases. Biotechnol Lett 28:207–213 [View Article][PubMed]
    [Google Scholar]
  35. Ruth K., de Roo G., Egli T., Ren Q. ( 2008). Identification of two acyl-CoA synthetases from Pseudomonas putida GPo1: one is located at the surface of polyhydroxyalkanoates granules. Biomacromolecules 9:1652–1659 [View Article][PubMed]
    [Google Scholar]
  36. Saegusa H., Shiraki M., Kanai C., Saito T. ( 2001). Cloning of an intracellular poly[d(−)-3-hydroxybutyrate] depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product. J Bacteriol 183:94–100 [View Article][PubMed]
    [Google Scholar]
  37. Simon R., Priefer U., Pühler A. ( 1983). A broad host-range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:794–791 [CrossRef]
    [Google Scholar]
  38. Srinivasan S., Barnard G. C., Gerngross T. U. ( 2002). A novel high-cell-density protein expression system based on Ralstonia eutropha. . Appl Environ Microbiol 68:5925–5932 [View Article][PubMed]
    [Google Scholar]
  39. Srivastava S., Urban M., Friedrich B. ( 1982). Mutagenesis of Alcaligenes eutrophus by insertion of the drug-resistance transposon Tn5. . Arch Microbiol 131:203–207 [View Article][PubMed]
    [Google Scholar]
  40. Steinbüchel A., Hein S. ( 2001). Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123[PubMed]
    [Google Scholar]
  41. Stubbe J., Tian J. ( 2003). Polyhydroxyalkanoate (PHA) homeostasis: the role of PHA synthase. Nat Prod Rep 20:445–457 [View Article][PubMed]
    [Google Scholar]
  42. Stubbe J., Tian J., He A., Sinskey A. J., Lawrence A. G., Liu P. ( 2005). Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu Rev Biochem 74:433–480 [View Article][PubMed]
    [Google Scholar]
  43. Sudesh K., Abe H., Doi Y. ( 2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polymers. Prog Polym Sci 25:1503–1555 [View Article]
    [Google Scholar]
  44. Thibodeau S. A., Fang R., Joung J. K. ( 2004). High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. Biotechniques 36:410–415[PubMed]
    [Google Scholar]
  45. Uchino K., Saito T., Gebauer B., Jendrossek D. ( 2007). Isolated poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl coenzyme A (CoA) and degradation of PHB to acetyl-CoA. J Bacteriol 189:8250–8256 [View Article][PubMed]
    [Google Scholar]
  46. Wang Z. H., Ma P., Chen J., Zhang J., Chen C. B., Chen G. Q. ( 2011). A transferable heterogeneous two-hybrid system in Escherichia coli based on polyhydroxyalkanoates synthesis regulatory protein PhaR. Microb Cell Fact 10:21 [View Article][PubMed]
    [Google Scholar]
  47. Wodzinska J., Snell K. D., Rhomberg A., Sinskey A. J., Biemann K., Stubbe J. ( 1996). Polyhydroxybutyrate synthase: evidence for covalent catalysis. J Am Chem Soc 118:6319–6320 [View Article]
    [Google Scholar]
  48. York G. M., Junker B. H., Stubbe J. A., Sinskey A. J. ( 2001a). Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol 183:4217–4226 [View Article][PubMed]
    [Google Scholar]
  49. York G. M., Stubbe J., Sinskey A. J. ( 2001b). New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397 [View Article][PubMed]
    [Google Scholar]
  50. York G. M., Stubbe J., Sinskey A. J. ( 2002). The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 184:59–66 [View Article][PubMed]
    [Google Scholar]
  51. York G. M., Lupberger J., Tian J., Lawrence A. G., Stubbe J., Sinskey A. J. ( 2003). Ralstonia eutropha H16 encodes two and possibly three intracellular poly[d-(−)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185:3788–3794 [View Article][PubMed]
    [Google Scholar]
  52. Zhang S., Yasuo T., Lenz R. W., Goodwin S. ( 2000). Kinetic and mechanistic characterization of the polyhydroxybutyrate synthase from Ralstonia eutropha. . Biomacromolecules 1:244–251 [View Article][PubMed]
    [Google Scholar]
  53. Zhang S., Kolvek S., Lenz R. W., Goodwin S. ( 2003). Mechanism of the polymerization reaction initiated and catalyzed by the polyhydroxybutyrate synthase of Ralstonia eutropha. . Biomacromolecules 4:504–509 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051508-0
Loading
/content/journal/micro/10.1099/mic.0.051508-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error