1887

Abstract

The pathogenicity island (FPI) encodes proteins thought to compose a type VI secretion system (T6SS) that is required for the intracellular growth of . In this work we used deletion mutagenesis and genetic complementation to determine that the intracellular growth of was dependent on 14 of the 18 genes in the FPI. The products of the operon were localized by the biochemical fractionation of and LVS. Sucrose gradient separation of water-insoluble material showed that the FPI-encoded proteins IglA, IglB and IglC were found in multiple fractions, especially in a fraction that did not correspond to a known membrane fraction. We interpreted these data to suggest that IglA, IglB and IglC are part of a macromolecular structure. Analysis of published structural data suggested that IglC is an analogue of Hcp, which is thought to form long nano-tubes. Thus the fractionation properties of IglA, IglB and IglC are consistent with the current model of the T6SS apparatus, which supposes that IglA and IglB homologues form an outer tube structure that surrounds an inner tube composed of Hcp (IglC) subunits. Fractionation of expressing FLAG-tagged DotU (IcmH homologue) and PdpB (IcmF homologue) showed that these proteins localize to the inner membrane. Deletion of led to the cleavage of PdpB, suggesting an interaction of these two proteins that is consistent with results obtained with other T6SSs. Our results may provide a mechanistic basis for many of the studies that have examined the virulence properties of mutants in FPI genes, namely that the observed phenotypes of the mutants are the result of the disruption of the FPI-encoded T6SS structure.

Funding
This study was supported by the:
  • Canadian Institutes of Health Research (Award MOP 89812)
  • National Institute of Allergy and Infectious Diseases (Award 5R01 AI056212-02)
  • National Center for Research Resources
  • NCRR (Award RR016466)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052308-0
2011-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/12/3483.html?itemId=/content/journal/micro/10.1099/mic.0.052308-0&mimeType=html&fmt=ahah

References

  1. Barker J. R., Chong A., Wehrly T. D., Yu J. J., Rodriguez S. A., Liu J., Celli J., Arulanandam B. P., Klose K. E. ( 2009). The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol 74:1459–1470 [View Article][PubMed]
    [Google Scholar]
  2. Bingle L. E., Bailey C. M., Pallen M. J. ( 2008). Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8 [View Article][PubMed]
    [Google Scholar]
  3. Bönemann G., Pietrosiuk A., Diemand A., Zentgraf H., Mogk A. ( 2009). Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28:315–325 [View Article][PubMed]
    [Google Scholar]
  4. Bönemann G., Pietrosiuk A., Mogk A. ( 2010). Tubules and donuts: a type VI secretion story. Mol Microbiol 76:815–821 [View Article][PubMed]
    [Google Scholar]
  5. Boyer F., Fichant G., Berthod J., Vandenbrouck Y., Attree I. ( 2009). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics 10:104 [View Article][PubMed]
    [Google Scholar]
  6. Bröms J. E., Lavander M., Sjöstedt A. ( 2009). A conserved α-helix essential for a type VI secretion-like system of Francisella tularensis.. J Bacteriol 191:2431–2446 [View Article][PubMed]
    [Google Scholar]
  7. Bröms J. E., Lavander M., Meyer L., Sjöstedt A. ( 2011). IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun 79:3683–3696 [View Article][PubMed]
    [Google Scholar]
  8. Checroun C., Wehrly T. D., Fischer E. R., Hayes S. F., Celli J. ( 2006). Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A 103:14578–14583 [View Article][PubMed]
    [Google Scholar]
  9. Chong A., Wehrly T. D., Nair V., Fischer E. R., Barker J. R., Klose K. E., Celli J. ( 2008). The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun 76:5488–5499 [View Article][PubMed]
    [Google Scholar]
  10. Clemens D. L., Lee B. Y., Horwitz M. A. ( 2004). Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun 72:3204–3217 [View Article][PubMed]
    [Google Scholar]
  11. de Bruin O. M., Ludu J. S., Nano F. E. ( 2007). The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7:1 [View Article][PubMed]
    [Google Scholar]
  12. Golovliov I., Ericsson M., Sandström G., Tärnvik A., Sjöstedt A. ( 1997). Identification of proteins of Francisella tularensis induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kilodalton protein. Infect Immun 65:2183–2189[PubMed]
    [Google Scholar]
  13. Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjöstedt A. ( 2003). An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 71:5940–5950 [View Article][PubMed]
    [Google Scholar]
  14. Gray C. G., Cowley S. C., Cheung K. K., Nano F. E. ( 2002). The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett 215:53–56 [View Article][PubMed]
    [Google Scholar]
  15. Huntley J. F., Conley P. G., Hagman K. E., Norgard M. V. ( 2007). Characterization of Francisella tularensis outer membrane proteins. J Bacteriol 189:561–574 [View Article][PubMed]
    [Google Scholar]
  16. Lai X. H., Golovliov I., Sjöstedt A. ( 2004). Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis.. Microb Pathog 37:225–230 [View Article][PubMed]
    [Google Scholar]
  17. Lindgren H., Golovliov I., Baranov V., Ernst R. K., Telepnev M., Sjöstedt A. ( 2004). Factors affecting the escape of Francisella tularensis from the phagolysosome. J Med Microbiol 53:953–958 [View Article][PubMed]
    [Google Scholar]
  18. Ludu J. S., de Bruin O. M., Duplantis B. N., Schmerk C. L., Chou A. Y., Elkins K. L., Nano F. E. ( 2008a). The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol 190:4584–4595 [View Article][PubMed]
    [Google Scholar]
  19. Ludu J. S., Nix E. B., Duplantis B. N., de Bruin O. M., Gallagher L. A., Hawley L. M., Nano F. E. ( 2008b). Genetic elements for selection, deletion mutagenesis and complementation in Francisella spp. FEMS Microbiol Lett 278:86–93 [View Article][PubMed]
    [Google Scholar]
  20. Ma L. S., Lin J. S., Lai E. M. ( 2009). An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its Walker A motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens.. J Bacteriol 191:4316–4329 [View Article][PubMed]
    [Google Scholar]
  21. Maier T. M., Havig A., Casey M., Nano F. E., Frank D. W., Zahrt T. C. ( 2004). Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol 70:7511–7519 [View Article][PubMed]
    [Google Scholar]
  22. Maier T. M., Casey M. S., Becker R. H., Dorsey C. W., Glass E. M., Maltsev N., Zahrt T. C., Frank D. W. ( 2007). Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun 75:5376–5389 [View Article][PubMed]
    [Google Scholar]
  23. Melillo A., Sledjeski D. D., Lipski S., Wooten R. M., Basrur V., Lafontaine E. R. ( 2006). Identification of a Francisella tularensis LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol Lett 263:102–108 [View Article][PubMed]
    [Google Scholar]
  24. Nano F. E. ( 1988). Identification of a heat-modifiable protein of Francisella tularensis and molecular cloning of the encoding gene. Microb Pathog 5:109–119 [View Article][PubMed]
    [Google Scholar]
  25. Nano F. E., Zhang N., Cowley S. C., Klose K. E., Cheung K. K., Roberts M. J., Ludu J. S., Letendre G. W., Meierovics A. I. et al. & other authors ( 2004). A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186:6430–6436 [View Article][PubMed]
    [Google Scholar]
  26. Osipiuk J., Xu X., Cui H., Savchenko A., Edwards A., Joachimiak A. ( 2011). Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa.. J Struct Funct Genomics 12:21–26 [View Article][PubMed]
    [Google Scholar]
  27. Pavkova I., Reichelova M., Larsson P., Hubalek M., Vackova J., Forsberg A., Stulik J. ( 2006). Comparative proteome analysis of fractions enriched for membrane-associated proteins from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica strains. J Proteome Res 5:3125–3134 [View Article][PubMed]
    [Google Scholar]
  28. Santic M., Molmeret M., Abu Kwaik Y. ( 2005). Modulation of biogenesis of the Francisella tularensis subsp. novicida-containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-γ. Cell Microbiol 7:957–967 [View Article][PubMed]
    [Google Scholar]
  29. Schmerk C. L., Duplantis B. N., Howard P. L., Nano F. E. ( 2009a). A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology 155:1498–1504 [View Article][PubMed]
    [Google Scholar]
  30. Schmerk C. L., Duplantis B. N., Wang D., Burke R. D., Chou A. Y., Elkins K. L., Ludu J. S., Nano F. E. ( 2009b). Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida.. Microbiology 155:1489–1497 [View Article][PubMed]
    [Google Scholar]
  31. Sexton J. A., Miller J. L., Yoneda A., Kehl-Fie T. E., Vogel J. P. ( 2004). Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun 72:5983–5992 [View Article][PubMed]
    [Google Scholar]
  32. Shrivastava S., Mande S. S. ( 2008). Identification and functional characterization of gene components of type VI secretion system in bacterial genomes. PLoS ONE 3:e2955 [View Article][PubMed]
    [Google Scholar]
  33. Sun P., Austin B. P., Schubot F. D., Waugh D. S. ( 2007). New protein fold revealed by a 1.65 Å resolution crystal structure of Francisella tularensis pathogenicity island protein IglC. Protein Sci 16:2560–2563 [View Article][PubMed]
    [Google Scholar]
  34. Telepnev M., Golovliov I., Sjöstedt A. ( 2005). Francisella tularensis LVS initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells. Microb Pathog 38:239–247 [View Article][PubMed]
    [Google Scholar]
  35. Tempel R., Lai X. H., Crosa L., Kozlowicz B., Heffron F. ( 2006). Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun 74:5095–5105 [View Article][PubMed]
    [Google Scholar]
  36. Twine S. M., Mykytczuk N. C., Petit M. D., Shen H., Sjöstedt A., Wayne Conlan J., Kelly J. F. ( 2006). In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun 345:1621–1633 [View Article][PubMed]
    [Google Scholar]
  37. Zheng J., Leung K. Y. ( 2007). Dissection of a type VI secretion system in Edwardsiella tarda.. Mol Microbiol 66:1192–1206 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052308-0
Loading
/content/journal/micro/10.1099/mic.0.052308-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error